500
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

The Potential of Single Nucleotide Polymorphisms (SNPs) as Biomarkers and Their Association with the Increased Risk of Coronary Heart Disease: A Systematic Review

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 289-301 | Received 16 Jan 2023, Accepted 30 Apr 2023, Published online: 05 May 2023

References

  • Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–1866. doi:10.1161/CIRCRESAHA.114.302721
  • Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111(25):3481–3488. doi:10.1161/CIRCULATIONAHA.105.537878
  • Baihaqi WM, Setiawan NA, Ardiyanto I. Rule extraction for fuzzy expert system to diagnose Coronary artery disease. Proceedings - 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering; ICITISEE; 2016:136–141.
  • Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. doi:10.1016/j.jacc.2020.11.010
  • Sayols-Baixeras S, Lluís-Ganella C, Lucas G, Elosua R. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet. 2014;7(7):15. doi:10.2147/TACG.S35301
  • Orho-Melander M. Genetics of coronary heart disease: towards causal mechanisms, novel drug targets and more personalized prevention. J Intern Med. 2015;278(5):433–446. doi:10.1111/joim.12407
  • Kessler T, Erdmann J, Schunkert H. Genetics of coronary artery disease and myocardial infarction - 2013. Curr Cardiol Rep. 2013;15(6):1–8. doi:10.1007/s11886-013-0368-0
  • Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–2358. doi:10.1056/NEJMoa1605086
  • Zeng L, Talukdar HA, Koplev S, et al. Contribution of regulatory-gene networks to heritability of coronary artery disease. J Am Coll Cardiol. 2019;73(23):2946. doi:10.1016/j.jacc.2019.03.520
  • Nikpay M, Goel A, Won HH, et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121.
  • Morieri ML, Gao H, Pigeyre M, et al. Genetic tools for coronary risk assessment in type 2 diabetes: a cohort study from the ACCORD clinical trial. Diabetes Care. 2018;41(11):2404–2413. doi:10.2337/dc18-0709
  • Sumi MP, Mahajan B, Sattar RSA, et al. Elucidation of epigenetic landscape in coronary artery disease: a review on basic concept to personalized medicine. Epigenet Insights. 2021:14. doi:10.1177/2516865720988567
  • Dent THS. Predicting the risk of coronary heart disease. II: the role of novel molecular biomarkers and genetics in estimating risk, and the future of risk prediction. Atherosclerosis. 2010;213(2):352–362. doi:10.1016/j.atherosclerosis.2010.06.021
  • Qamar T, Mukherjee S. Genetic approaches for the diagnosis and treatment of rheumatoid arthritis through personalized medicine. Gene Rep. 2021;23(1):1–9.
  • Hindi NN, Alenbawi J, Nemer G. Pharmacogenomics variability of lipid-lowering therapies in familial hypercholesterolemia. J Pers Med. 2021;11(9):877. doi:10.3390/jpm11090877
  • Xu LB, Zhang YQ, Zhang NN, et al. Rs10757274 gene polymorphisms in coronary artery disease. Medicine. 2020;99(3). doi:10.1097/MD.0000000000018841
  • Li X, Lin Y, Zhang R. Associations between endothelial nitric oxide synthase gene polymorphisms and the risk of coronary artery disease: a systematic review and meta-analysis of 132 case-control studies. Eur J Prev Cardiol. 2019;26(2):160–170. doi:10.1177/2047487318780748
  • Salari N, Mansouri K, Hosseinian-Far A, et al. The effect of polymorphisms (174G> C and 572C> G) on the Interleukin-6 gene in coronary artery disease: a systematic review and meta-analysis. Genes Environ. 2021;43(1). doi:10.1186/s41021-021-00172-8
  • Tabaei S, Motallebnezhad M, Tabaee SS. Systematic review and meta-analysis of association of polymorphisms in inflammatory cytokine genes with coronary artery disease. Inflamm Res. 2020;69(10):1001–1013. doi:10.1007/s00011-020-01385-3
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;2021:372.
  • Aromataris E, Munn Z. JBI Manual for Evidence Synthesis; 2020; Available from: https://wiki.jbi.global/display/MANUAL/11.1+Introduction+to+Scoping+reviews. Accessed May 2, 2023.
  • Conway R, Grimshaw AA, Konig MF, et al. SARS–CoV-2 infection and COVID-19 outcomes in rheumatic diseases: a systematic literature review and meta-analysis. Arthritis Rheumatol. 2022;74(5):766–775. doi:10.1002/art.42030
  • Davies NM, Holmes MV, Smith Davey G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:1.
  • Goplen CM, Verbeek W, Kang SH, et al. Preoperative opioid use is associated with worse patient outcomes after Total joint arthroplasty: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2019;20(1). doi:10.1186/s12891-019-2619-8
  • Tada H, Fujino N, Nomura A, et al. Personalized medicine for cardiovascular diseases. J Hum Genet. 2021;66(1):67–74. doi:10.1038/s10038-020-0818-7
  • Hu P, Dharmayat KI, Stevens CAT, et al. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Circulation. 2020;141(22):1742–1759. doi:10.1161/CIRCULATIONAHA.119.044795
  • Dandona S, Stewart AFR, Chen L, et al. Gene dosage of the common variant 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol. 2010;56(6):479–486. doi:10.1016/j.jacc.2009.10.092
  • Nordlie MA, Wold LE, Kloner RA. Genetic contributors toward increased risk for ischemic heart disease. J Mol Cell Cardiol. 2005;39:4. doi:10.1016/j.yjmcc.2005.06.006
  • Tomkin H. GLDL as a cause of atherosclerosis. Open Atheroscler Thromb J. 2012;5(1):13–21.
  • Saleheen D, Haycock PC, Zhao W, et al. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2017;5(7):524–533. doi:10.1016/S2213-8587(17)30088-8
  • Wang JY, Zhang YJ, Li H, et al. CRISPLD1 rs12115090 polymorphisms alters antiplatelet potency of clopidogrel in coronary artery disease patients in Chinese Han. Gene. 2018;678:226–232. doi:10.1016/j.gene.2018.08.027
  • Alliey-Rodriguez N, Grey TA, Shafee R, et al. NRXN1 is associated with enlargement of the temporal horns of the lateral ventricles in psychosis. Transl Psychiatry. 2019;9(1):1–7. doi:10.1038/s41398-019-0564-9
  • Park HS, Kim IJ, Kim EG, et al. A study of associations between CUBN, HNF1A, and LIPC gene polymorphisms and coronary artery disease. Sci Rep. 2020;10(1):1–10. doi:10.1038/s41598-019-56847-4
  • Teupser D, Burkhardt R, Wilfert W, Haffner I, Nebendahl K, Thiery J. Identification of macrophage arginase I as a new candidate gene of atherosclerosis resistance. Arterioscler Thromb Vasc Biol. 2006;26:2. doi:10.1161/01.ATV.0000195791.83380.4c
  • Meroufel D, Dumont J, Médiène-Benchekor S, et al. Characterization of arginase 1 gene polymorphisms in the Algerian population and association with blood pressure. Clin Biochem. 2009;42(10–11):1178–1182. doi:10.1016/j.clinbiochem.2009.03.004
  • Shah SFA, Khan MJ, Iqbal T, et al. Arginase-1 variants and the risk of familial coronary artery disease in subjects originating from Pakistan. Genet Test Mol Biomarkers. 2019;23(1):32–38. doi:10.1089/gtmb.2018.0227
  • Yang Z, Ming XF, Conway R, Grimshaw AA, Konig MF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol. 2014;5. doi:10.3389/fimmu.2014.00533
  • Pernow J, Jung C. Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res. 2013;98(3):334–343. doi:10.1093/cvr/cvt036
  • Vinayagamoorthy N, Hu HJ, Yim SH, et al. New variants including ARG1 polymorphisms associated with C-reactive protein levels identified by genome-wide association and pathway analysis. PLoS One. 2014;9(4):e95866. doi:10.1371/journal.pone.0095866
  • Jakubowski H. Pathophysiological consequences of homocysteine excess. J Nutr. 2006;136(6):1741S–1749S. doi:10.1093/jn/136.6.1741S
  • Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202. doi:10.1136/bmj.325.7374.1202
  • Masud R, Baqai HZ. The communal relation of MTHFR, MTR, ACE gene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease. Appl Physiol Nutr Metab. 2017;42(10):1009–1014. doi:10.1139/apnm-2017-0030
  • Alie N, Eldib M, Fayad ZA, Mani V. Inflammation, atherosclerosis, and coronary artery disease: PET/CT for the evaluation of atherosclerosis and inflammation. Clin Med Insights Cardiol. 2015;8(Suppl 3):13–21. doi:10.4137/CMC.S17063
  • Auer J, Weber T, Berent R, Lassnig E, Lamm G, Eber B. Genetic polymorphisms in cytokine and adhesion molecule genes in coronary artery disease. Am J Pharmacogenomics. 2003;3(5):317–328. doi:10.2165/00129785-200303050-00003
  • Duarte VHR, Miranda CT, De OF, et al. TREML4 mRNA expression and polymorphisms in blood leukocytes are associated with atherosclerotic lesion extension in coronary artery disease. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-43745-y
  • Sen SK, Boelte KC, Barb JJ, et al. Integrative DNA, RNA, and protein evidence connects TREML4 to coronary artery calcification. Am J Hum Genet. 2014;95(1):66–76. doi:10.1016/j.ajhg.2014.06.003
  • Ansari WM, Humphries SE, Naveed AK, Khan OJ, Khan DA. Influence of cytokine gene polymorphisms on proinflammatory/anti-inflammatory cytokine imbalance in premature coronary artery disease. Postgrad Med J. 2017;93(1098):209–214. doi:10.1136/postgradmedj-2016-134167
  • Mitrokhin V, Nikitin A, Brovkina O, et al. Association between IL-18/18R gene polymorphisms and coronary artery disease: influence of IL-18/18R genetic variants on cytokine expression. J Inflamm Res. 2018;11:1–9. doi:10.2147/JIR.S153370
  • Giedraitis V, He B, Huang WX, Hillert J. Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol. 2001;112(1–2):146–152. doi:10.1016/S0165-5728(00)00407-0
  • Chen H, Ding S, Liu X, Wu Y, Wu X. Association of interleukin-6 genetic polymorphisms and environment factors interactions with coronary artery disease in a Chinese han population. Clin Exp Hypertens. 2018;40(6):514–517. doi:10.1080/1064196320171403618
  • Klimushina MV, Gumanova NG, Kutsenko VA, et al. Association of common polymorphisms in IL-6 and IL6ST genes with levels of inflammatory markers and coronary stenosis. Meta Gene. 2019;21:100593. doi:10.1016/j.mgene.2019.100593
  • Zorzetto M, Ferrarotti I, Trisolini R, et al. Complement receptor 1 gene polymorphisms are associated with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2003;168(3):330–334. doi:10.1164/rccm.200302-221OC
  • de Vries MA, Trompet S, Mooijaart SP, et al. Complement receptor 1 gene polymorphisms are associated with cardiovascular risk. Atherosclerosis. 2017;257:16. doi:10.1016/j.atherosclerosis.2016.12.017
  • Koch W, Kastrati A, Böttiger C, Mehilli J, Von Beckerath N, Schömig A. Interleukin-10 and tumor necrosis factor gene polymorphisms and risk of coronary artery disease and myocardial infarction. Atherosclerosis. 2001;159(1):137–144. doi:10.1016/S0021-9150(01)00467-1
  • Ghalandari M, Jamialahmadi K, Nik MM, et al. Association of Interleukin-10-592 C > A gene polymorphism with coronary artery disease: a case-control study and meta-analysis. Cytokine. 2021;139:5.
  • Smolková B, Bonassi S, Buociková V, et al. Genetic determinants of quantitative traits associated with cardiovascular disease risk. Mutat Res. 2015;778:18–25. doi:10.1016/j.mrfmmm.2015.05.005
  • Orsatti CL, Sobreira ML, Sandrim VC, Nahas-Neto J, Orsatti FL, Nahas EAP. Autophagy-related 16-like 1gene polymorphism, risk factors for cardiovascular disease and associated carotid intima-media thickness in postmenopausal women. Clin Biochem. 2018;61:12–17. doi:10.1016/j.clinbiochem.2018.09.006
  • Lange RA, Hillis LD. Antiplatelet therapy for ischemic heart disease. N Engl J Med. 2004;350(3):277–280. doi:10.1056/NEJMe038191
  • Zhang S, Zhu J, Li H, et al. Study of the association of PEAR1, P2Y12, and UGT2A1 polymorphisms with platelet reactivity in response to dual antiplatelet therapy in Chinese patients. Cardiology. 2018;140(1):21–29. doi:10.1159/000488101
  • Faraday N, Yanek LR, Yang XP, et al. Identification of a specific intronic PEAR1 gene variant associated with greater platelet aggregability and protein expression. Blood. 2011;118(12):3367–3375. doi:10.1182/blood-2010-11-320788
  • Enrique Herrera-Galeano J, Becker DM, Wilson AF, et al. A novel variant in the platelet endothelial aggregation receptor-1 gene is associated with increased platelet aggregability. Arterioscler Thromb Vasc Biol. 2008;28(8):1484–1490. doi:10.1161/ATVBAHA.108.168971
  • Su J, Yu Q, Yang J, et al. The association of polymorphisms in related circadian rhythm genes and clopidogrel resistance susceptibility. Basic Clin Pharmacol Toxicol. 2021;129(3):196–209. doi:10.1111/bcpt.13622
  • Schroder EA, Lefta M, Zhang X, et al. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am J Physiol Cell Physiol. 2013;304:10. doi:10.1152/ajpcell.00383.2012
  • Alibhai FJ, LaMarre J, Reitz CJ, et al. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol. 2017;105:24–37. doi:10.1016/j.yjmcc.2017.01.008
  • Schlaepfer IR, Clegg HV, Corley RP, et al. The human protein kinase C gamma gene (PRKCG) as a susceptibility locus for behavioral disinhibition. Addict Biol. 2007;12(2):200–209. doi:10.1111/j.1369-1600.2007.00063.x
  • Zafar MU, Paz-Yepes M, Shimbo D, et al. Anxiety is a better predictor of platelet reactivity in coronary artery disease patients than depression. Eur Heart J. 2010;31(13):1573–1582. doi:10.1093/eurheartj/ehp602
  • Drago A, Monti B, de Ronchi D, Serretti A. CRY1 variations impacts on the depressive relapse rate in a sample of bipolar patients. Psychiatry Investig. 2015;12(1):118. doi:10.4306/pi.2015.12.1.118
  • Zhang Z, Wang Y, Zhang Q, et al. The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls. Schizophr Res. 2019;204:193–200. doi:10.1016/j.schres.2018.09.007
  • Laing E, Hess P, Shen Y, Wang J, Hu S. The role and impact of SNPs in pharmacogenomics and personalized medicine. Curr Drug Metab. 2011;12(5):460–486. doi:10.2174/138920011795495268
  • Vrablik M, Dlouha D, Todorovova V, Stefler D, Hubacek JA. Genetics of cardiovascular disease: how far are we from personalized CVD risk prediction and management? Int J Mol Sci. 2021;22:4182. doi:10.3390/ijms22084182
  • Ho DSW, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning SNP based prediction for precision medicine. Front Genet. 2019;10:267. doi:10.3389/fgene.2019.00267
  • Bachtiar M, Ooi BNS, Wang J, et al. Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. Pharmacogenomics J. 2019;19(6):516–527. doi:10.1038/s41397-019-0096-y
  • Pott J, Schlegel V, Teren A, et al. Genetic regulation of PCSK9 (proprotein convertase subtilisin/kexin type 9) plasma levels and its impact on atherosclerotic vascular disease phenotypes. Circ Genom Precis Med. 2018;11(5). doi:10.1161/CIRCGEN.117.001992