185
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Occurrence of Methicillin-Resistant Staphylococcus aureus (MRSA) in Bovine Bulk Milk and Farm Workers in Smallholder Dairy Farming Systems in Northwestern Ethiopia

, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 71-80 | Received 09 Dec 2023, Accepted 04 Mar 2024, Published online: 11 Mar 2024

References

  • Yehia HM, Al-Masoud AH, Alarjani KM, Alamri MS. Prevalence of methicillin-resistant (mecA gene) and heat-resistant Staphylococcus aureus strains in pasteurized camel milk. J Dairy Sci. 2020;103:5947–5963. doi:10.3168/jds.2019-17631
  • Locatelli C, Cremonesi P, Caprioli A, et al. Occurrence of methicillin-resistant Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in contact with herds. J Dairy Sci. 2017;100(1):608–619. doi:10.3168/jds.2016-11797
  • Fisher EA, Paterson GK. Prevalence and characterisation of methicillin-resistant staphylococci from bovine bulk tank milk in England and Wales. J Glob Antimicrob Resist. 2020;22:139–144. doi:10.1016/j.jgar.2020.01.013
  • Nyokabi S, Luning PA, de Boer IJM, et al. Milk quality and hygiene: knowledge, attitudes and practices of smallholder dairy farmers in central Kenya. Food Control. 2021;130:1–10. doi:10.1016/j.foodcont.2021.108303
  • Kivaria FM, Noordhuizen JPTM, Kapaga AM. Evaluation of the hygienic quality and associated public health hazards of raw milk marketed by smallholder dairy producers in the Dar es Salaam region, Tanzania. Trop Anim Health Prod. 2006;38(3):185–194. doi:10.1007/s11250-006-4339-y
  • Knight-Jones TJD, Hang’ombe MB, Songe MM, et al. Microbial contamination and hygiene of fresh cow’s milk produced by smallholders in Western Zambia. Int J Environ Res Public Health. 2016;13(7):737. doi:10.3390/ijerph13070737
  • Haag AF, Fitzgerald JR, Penadés JR. Staphylococcus aureus in animals. Microbiol Spectr. 2019;7(3):7. doi:10.1128/microbiolspec.gpp3-0060-2019
  • Poutrel B, Vialard J, Groud K, et al. Sources of contamination of bovine milk and raw milk cheese by Staphylococcus aureus using variable number of tandem repeat analysis. J Vet Sci Technol. 2015;06:10–4172. doi:10.4172/2157-7579.1000246
  • Li T, Lu H, Wang X, et al. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front Cell Infect Microbiol. 2017;7. doi:10.3389/fcimb.2017.00127
  • Abebe R, Hatiya H, Abera M, et al. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet Res. 2016;12(1):1–11. doi:10.1186/s12917-016-0905-3
  • Kümmel J, Stessl B, Gonano M, et al. Staphylococcus aureus entrance into the dairy chain: tracking S. aureus from dairy cow to cheese. Front Microbiol. 2016;7:1–11. doi:10.3389/fmicb.2016.01603
  • Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and Staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014;2014:1–9. doi:10.1155/2014/827965
  • Le HHT, Dalsgaard A, Andersen PS, et al. Large-scale Staphylococcus aureus foodborne disease poisoning outbreak among primary school children. Microbiol Res. 2021;12(1):43–52. doi:10.3390/MICROBIOLRES12010005
  • Mutua F, Masanja H, Chacha J, et al. (2021) A rapid review of foodborne disease hazards in East Africa. ILRI Discussion Paper.
  • Gomes F, Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol. 2016;72(4):377–382. doi:10.1007/s00284-015-0958-8
  • Sharma C, Rokana N, Chandra M, et al. Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci. 2018;4:1–27. doi:10.3389/fvets.2017.00237
  • Dhungel S, Rijal KR, Yadav B, et al. Methicillin-Resistant Staphylococcus aureus (MRSA): prevalence, antimicrobial susceptibility pattern, and detection of mec a gene among cardiac patients from a tertiary care heart center in Kathmandu, Nepal. Infect Dis. 2021;14:1–10. doi:10.1177/11786337211037355
  • Fuda C, Suvorov M, Vakulenko SB, Mobashery S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem. 2004;279(39):40802–40806. doi:10.1074/jbc.M403589200
  • Chen C, Wu F. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) colonisation and infection among livestock workers and veterinarians: a systematic review and meta-analysis. Occup Environ Med. 2021;78(7):465–471. doi:10.1136/oemed-2020-106418
  • Larsen J, Stegger M, Andersen PS, et al. Evidence for human adaptation and foodborne transmission of livestock-associated methicillin-resistant Staphylococcus aureus: table 1. Clinl Infect Dis. 2016;63(10):1349–1352. doi:10.1093/cid/ciw532
  • Fetsch A, Etter D, Johler S. Livestock-associated methicillin-resistant Staphylococcus aureus—current situation and impact from a one health perspective. Curr Clin Microbiol Rep. 2021;8(3):103–113. doi:10.1007/s40588-021-00170-y
  • Silva V, Monteiro A, Pereira JE, et al. MRSA in humans, pets and livestock in Portugal: where we came from and where we are going. Pathogens. 2022;11(10):1110. doi:10.3390/pathogens11101110
  • Graveland H, Duim B, van Duijkeren E, et al. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol. 2011;301(8):630–634. doi:10.1016/j.ijmm.2011.09.004
  • Anjum MF, Marco-Jimenez F, Duncan D, et al. Livestock-associated methicillin-resistant Staphylococcus aureus from animals and animal products in the UK. Front Microbiol. 2019;10:1–7. doi:10.3389/fmicb.2019.02136
  • Wendlandt S, Schwarz S, Silley P. Methicillin-resistant Staphylococcus aureus: a food-borne pathogen? Annu Rev Food Sci Technol. 2013;4(1):117–139. doi:10.1146/annurev-food-030212-182653
  • Cuny C, Wieler LH, Witte W. Livestock-associated MRSA: the impact on humans. Antibiotics. 2015;4(4):521–543. doi:10.3390/antibiotics4040521
  • Anand KB, Agrawal P, Kumar S, Kapila K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J Med Microbiol. 2009;27(1):27–29. doi:10.1016/S0255-0857(21)01748-5
  • R S, P V, D’Souza AO, Vinod R. Comparison of phenotypic and genotypic characterization methods for the detection of methicillin-resistant Staphylococcus aureus. Cureus. 2022;14:1–5. doi:10.7759/cureus.23396
  • Gebremeskel FT, Alemayehu T, Ali MM. Methicillin-resistant Staphylococcus aureus antibiotic susceptibility profile and associated factors among hospitalized patients at Hawassa University Comprehensive Specialized Hospital, Ethiopia. IJID Regions. 2022;3:129–134. doi:10.1016/j.ijregi.2022.03.015
  • Tefera S, Awoke T, Mekonnen D. Methicillin and vancomycin-resistant staphylococcus aureus and associated factors from surgical ward inpatients at Debre Markos referral hospital, northwest Ethiopia. Infect Drug Resist. 2021;14:3053–3062. doi:10.2147/IDR.S324042
  • Girmay W, Gugsa G, Taddele H, et al. Isolation and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) from Milk in Shire Dairy Farms, Tigray, Ethiopia. Vet Med Int. 2020;2020(1):1–7. doi:10.1155/2020/8833973
  • Mekuriya E, Manilal A, Aklilu A, et al. Methicillin-resistant Staphylococcus aureus colonization among medicine and health science students, Arba Minch University, Ethiopia. Sci Rep. 2022;12(1):1–11. doi:10.1038/s41598-022-14212-y
  • Tibebu L, Belete Y, Tigabu E, Tsegaye W. Prevalence of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and potential risk factors in selected dairy farms at the interface of animal and human in Bishoftu, Ethiopia. Vet Med. 2021;12:241–251. doi:10.2147/vmrr.s331968
  • Desta K, Aklillu E, Gebrehiwot Y, et al. High levels of methicillin-resistant Staphylococcus aureus carriage among healthcare workers at a teaching hospital in Addis Ababa Ethiopia: first evidence using mecA detection. Infect Drug Resist. 2022;15:3135–3147. doi:10.2147/IDR.S360123
  • Asmelash T, Mesfin N, Addisu D, et al. Isolation, identification and drug resistance patterns of methicillin resistant Staphylococcus aureus from mastitic cows milk from selected dairy farms in and around Kombolcha, Ethiopia. J Vet Med Anim Health. 2016;8(1):1–10. doi:10.5897/jvmah2015.0422
  • Tassew A, Aki A, Legesse K. Isolation, identification and antimicrobial resistance profile of Staphylococcus aureus and occurrence of methicillin resistant S. aureus isolated from mastitic lactating cows in and around Assosa Town, Benishangul Gumuz Region, Ethiopia. J Dairy Vet Anim Res. 2017;6:1–7. doi:10.15406/jdvar.2017.06.00180
  • Issa G, Aksu H. Detection of methicillin-resistant Staphylococcus aureus in milk by PCR-based phenotyping and genotyping. Acta Veterinaria Eurasia. 2020;46(3):120–124. doi:10.5152/ACTAVET.2020.20011
  • Gómez P, Lozano C, González-Barrio D, et al. High prevalence of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in a semi-extensive red deer (Cervus elaphus hispanicus) farm in Southern Spain. Vet Microbiol. 2015;177(3–4):326–331. doi:10.1016/j.vetmic.2015.03.029
  • CLSI. Performance standards for antimicrobial susceptibility testing, 29th ed. In: CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
  • Stegger M, Andersen PS, Kearns A, et al. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin Microbiol Infect. 2012;18(4):395–400. doi:10.1111/j.1469-0691.2011.03715.x
  • Xie Y, He Y, Gehring A, et al. Genotypes and toxin gene profiles of staphylococcus aureus clinical isolates from China. PLoS One. 2011;6(12):1–11. doi:10.1371/journal.pone.0028276
  • Hart CA, Kariuki S. Antimicrobial resistance in developing countries. BMJ. 1998;317(7159):647–650. doi:10.1136/bmj.317.7159.647
  • Eshetie S, Tarekegn F, Moges F, et al. Methicillin resistant Staphylococcus aureus in Ethiopia: a meta-analysis. BMC Infect Dis. 2016;16(1):1–9. doi:10.1186/s12879-016-2014-0
  • Papadopoulos P, Papadopoulos T, Angelidis AS, et al. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 2018;69:43–50. doi:10.1016/j.fm.2017.07.016
  • Carfora V, Giacinti G, Sagrafoli D, et al. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in dairy sheep and in-contact humans: an intra-farm study. J Dairy Sci. 2016;99(6):4251–4258. doi:10.3168/jds.2016-10912
  • Haran KP, Godden SM, Boxrud D, et al. Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. J Clin Microbiol. 2012;50(3):688–695. doi:10.1128/JCM.05214-11
  • Giacinti G, Carfora V, Caprioli A, et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus carrying mecA or mecC and methicillin-susceptible Staphylococcus aureus in dairy sheep farms in central Italy. J Dairy Sci. 2017;100(10):7857–7863. doi:10.3168/jds.2017-12940
  • Schmidt T, Kock MM, Ehlers MM. Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. J Dairy Sci. 2015;98(9):6256–6269. doi:10.3168/jds.2015-9715
  • Mekuria A, Asrat D, Woldeamanuel Y, Tefera G. Identification and antimicrobial susceptibility of Staphylococcus aureus isolated from milk samples of dairy cows and nasal swabs of farm workers in selected dairy farms around Addis Ababa, Ethiopia. Afr J Microbiol Res. 2013;7:3501–3510. doi:10.5897/AJMR12.2060
  • Kalayu AA, Woldetsadik DA, Woldeamanuel Y, et al. Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia. BMC Vet Res. 2020;16(1):1–8. doi:10.1186/s12917-020-2235-8
  • Kreausukon K, Fetsch A, Kraushaar B, et al. Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. J Dairy Sci. 2012;95(8):4382–4388. doi:10.3168/jds.2011-5198
  • Rafif Khairullah A, Rehman S, Agus Sudjarwo S, et al. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res. 2022;11:722. doi:10.12688/f1000research.122225.1
  • Saikia L, Nath R, Choudhury B, Sarkar M. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus in Assam. Indian J Crit Care Med. 2009;13:156–158. doi:10.4103/0972-5229.58542
  • Blanco AR, Sudano Roccaro A, Spoto CG, Papa V. Susceptibility of methicillin-resistant staphylococci clinical isolates to netilmicin and other antibiotics commonly used in ophthalmic therapy. Curr Eye Res. 2013;38(8):811–816. doi:10.3109/02713683.2013.780624
  • Aetrugh S, Aboshkiwa M, Husien W, et al. Antimicrobial resistance profile and molecular characterization of methicillin-resistant staphylococcus isolates in Tripoli Central Hospital, Libya. Libyan Int Med Univ J. 2017;02(01):74–83. doi:10.21502/limuj.010.02.2017
  • Talukder M, Islam M, Ievy S, et al. Detection of multidrug resistant salmonella spp. From healthy and diseased broilers having potential public health significance. J Adv Biotechnol Exp Ther. 2021;4(2):248–255. doi:10.5455/JABET.2021.D125
  • Sommer MOA, Dantas G. Antibiotics and the resistant microbiome. Curr Opin Microbiol. 2011;14(5):556–563. doi:10.1016/j.mib.2011.07.005