196
Views
2
CrossRef citations to date
0
Altmetric
Review

Evaluation of respiratory route as a viable portal of entry for Salmonella in poultry

, , , , &
Pages 59-73 | Published online: 14 Aug 2014

References

  • Dungan RS. Board-invited review. Fate and transport of bioaerosols associated with livestock operations and manures. J Anim Sci. 2010;88: 3693–3706.20622180
  • López FE, de las Mercedes Pescaretti M, Morero R, Delgado MA. Salmonella typhimurium general virulence factors: a battle of David against Goliath? Food Res Int. 2012;45:842–851.
  • Harbaugh E, Trampel D, Wesley I, Hoff S, Griffith R, Hurd H. Rapid aerosol transmission of Salmonella among turkeys in a simulated holding-shed environment. Poult Sci. 2006;85:1693–1699.17012158
  • Oliveira CJ, Carvalho LF, Garcia TB. Experimental airborne transmission of Salmonella Agona and Salmonella typhimurium in weaned pigs. Epidemiol Infect. 2006;134:199–209.16409668
  • Wathes C, Zaidan W, Pearson G, Hinton M, Todd N. Aerosol infection of calves and mice with Salmonella typhimurium. Vet Rec. 1988;123: 590–594.3062881
  • Hermann J, Muñoz-Zanzi C, Zimmerman J. A method to provide improved dose-response estimates for airborne pathogens in animals: an example using porcine reproductive and respiratory syndrome virus. Vet Microbiol. 2009;133:297–302.18778902
  • Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003;47: 187–200.12639832
  • Pillai SD, Ricke SC. Bioaerosols from municipal and animal wastes: background and contemporary issues. Can J Microbiol. 2002;48:681–696.12381025
  • Centers for Disease Control and Prevention. Salmonella surveillance Annual summary. Atlanta, GA, USA: Centers for Disease Control and Prevention; 2006 Available from: http://wwwnc.cdc.gov/eid/pdfs/vol12no4_pdf-version.pdf. Accessed July 14, 2014.
  • US Food and Drug Administration. National Antimicrobial Resistance Monitoring System. Enteric bacteria Executive report. Rockville, MD, USA: US Department of Health and Human Services; 2007 Available from http://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoring-System/UCM209494.pdf. Accessed July 9, 2014
  • Scallan E, Hoekstra RM, Angulo FJ, et al Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis. 2011;17: 7–15.21192848
  • Barrow P, Neto OF. Pullorum disease and fowl typhoid–new thoughts on old diseases: a review. Avian Pathol. 2011;40:1–13.21331943
  • He H, Genovese KJ, Swaggerty CL, Nisbet DJ, Kogut MH. A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars. Foodborne Pathog Dis. 2012;9:1104–1110.23067396
  • Ohl ME, Miller SI. Salmonella: a model for bacterial pathogenesis. Annu Rev Med. 2001;52:259–274.11160778
  • Okamura M, Lillehoj HS, Raybourne RB, et al Differential responses of macrophages to Salmonella enterica serovars Enteritidis and typhimurium. Vet Immunol Immunopathol. 2005;107:327–335.16023220
  • Setta A, Barrow PA, Kaiser P, Jones MA. Immune dynamics following infection of avian macrophages and epithelial cells with typhoidal and non-typhoidal Salmonella enterica serovars; bacterial invasion and persistence, nitric oxide and oxygen production, differential host gene expression, NF-κB signalling and cell cytotoxicity. Vet Immunol Immunopathol. 2012;146:212–224.22475571
  • Ochman H, Groisman EA. Distribution of pathogenicity islands in Salmonella spp. Infect Immun. 1996;64:5410–5412.8945597
  • Pedersen TB, Olsen JE, Bisgaard M. Persistence of Salmonella Senftenberg in poultry production environments and investigation of its resistance to desiccation. Avian Pathol. 2008;37:421–427.18622860
  • Hensel M. Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol. 2004;294:95–102.15493819
  • Hu Q, Coburn B, Deng W, et al Salmonella enterica serovar Senftenberg human clinical isolates lacking SPI-1. J Clin Microbiol. 2008;46:1330–1336.18272702
  • Petermann SR, Sherwood JS, Logue CM. The Yersinia high pathogenicity island is present in Salmonella enterica subspecies I isolated from turkeys. Microb Pathog. 2008;45:110–114.18495411
  • Arnold T, Scholz H, Marg H, Rösler U, Hensel A. Impact of invA-PCR and culture detection methods on occurrence and survival of Salmonella in the flesh, internal organs and lymphoid tissues of experimentally infected pigs. J Vet Med B Infect Dis Vet Public Health. 2004;51:459–463.15606871
  • Carniel E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect. 2001;3:561–569.11418330
  • Ginocchio CC, Rahn K, Clarke R, Galan J. Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect Immun. 1997;65:1267–1272.9119461
  • Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol. 1997;23:1089–1097.9106201
  • Liljebjelke KA, Hofacre CL, Liu T, et al Vertical and horizontal transmission of Salmonella within integrated broiler production system. Foodborne Pathog Dis. 2005;2:90–102.15992303
  • Cox J, Pavic A. Advances in enteropathogen control in poultry production. J Appl Microbiol. 2010;108:745–755.19702864
  • Jarquin R, Hanning I, Ahn S, Ricke SC. Development of rapid detection and genetic characterization of Salmonella in poultry breeder feeds. Sensors. 2009;9:5308–5323.22346699
  • Davies R, Wray C. An approach to reduction of Salmonella infection in broiler chicken flocks through intensive sampling and identification of cross-contamination hazards in commercial hatcheries. Int J Food Microbiol. 1994;24:147–160.7703009
  • World Health Organization Microbiological Risk Assessment Series 2. Risk assessments of Salmonella in eggs and broiler chickens. World Health Organization Food and Agriculture Organization of the United Nations. Geneva, Switzerland: Food Safety Department, World Health Organization; 2002 Available from: http://www.fao.org/docrep/005/y4392e/y4392e00.htm. Accessed June 17, 2014.
  • Byrd J, DeLoach J, Corrier D, Nisbet D, Stanker L. Evaluation of Salmonella serotype distributions from commercial broiler hatcheries and grower houses. Avian Dis. 1999;43:39–47.10216758
  • Mitchell B, Buhr R, Berrang M, Bailey J, Cox N. Reducing airborne pathogens, dust and Salmonella transmission in experimental hatching cabinets using an electrostatic space charge system. Poult Sci. 2002;81:49–55.11885899
  • Berrang M, Cox N, Bailey J. Measuring air-borne microbial contamination of broiler hatching cabinets. J Appl Poult Res. 1995;4:83–87.
  • Lever M, Williams A. Cross-infection of chicks by airborne transmission of Salmonella Enteritidis PT4 Lett Appl Microbiol. 1996;23: 347–349.8987717
  • Wathes C, Howard K, Webster A. Survival of Escherichia coli in an aerosol at air temperatures of 15 and 30°C and a range of humidities. J Hyg. 1986;97:489–496.3540114
  • Choct M. Managing gut health through nutrition. Br Poult Sci. 2009;50: 9–15.19234925
  • Yi G, Allee G, Knight C, Dibner J. Impact of glutamine and oasis hatchling supplement on growth performance, small intestinal morphology, and immune response of broilers vaccinated and challenged with Eimeria maxima. Poult Sci. 2005;84:283–293.15742965
  • Uni Z, Smirnov A, Sklan D. Pre-and posthatch development of goblet cells in the broiler small intestine: effect of delayed access to feed. Poult Sci. 2003;82:320–327.12619811
  • Noy Y, Geyra A, Sklan D. The effect of early feeding on growth and small intestinal development in the posthatch poult. Poult Sci. 2001;80:912–919.11469654
  • Juul-Madsen HR, Su G, Sørensen P. Influence of early or late start of first feeding on growth and immune phenotype of broilers. Br Poult Sci. 2004;45:210–222.15222418
  • Dibner J, Knight C, Kitchell M, Atwell C, Downs A, Ivey F. Early feeding and development of the immune system in neonatal poultry. J Appl Poult Res. 1998;7:425–436.
  • Henderson S, Vicente J, Pixley C, Hargis B, Tellez G. Effect of an early nutritional supplement on broiler performance. Int J Poult Sci. 2008;7: 211–214.
  • Hooshmand M. Effect of early feeding programs on broiler performance. Int J Poult Sci. 2006;5:1140–1143.
  • Halevy O, Geyra A, Barak M, Uni Z, Sklan D. Early posthatch starvation decreases satellite cell proliferation and skeletal muscle growth in chicks. J Nutr. 2000;130:858–864.10736342
  • Vicente J, Higgins S, Hargis B, Tellez G. Effect of poultry guard litter amendment on horizontal transmission of Salmonella enteritidis in broiler chicks. Int J Poult Sci. 2007;6:314–317.
  • Fallschissel K, Kämpfer P, Jäckel U. Direct detection of Salmonella cells in the air of livestock stables by real-time PCR. Ann Occup Hyg. 2009;53:859–868.19675125
  • Fallschissel K, Klug K, Kämpfer P, Jäckel U. Detection of airborne bacteria in a German turkey house by cultivation-based and molecular methods. Ann Occup Hyg. 2010;54:934–943.20720091
  • Gast RK, Mitchell BW, Holt PS. Detection of airborne Salmonella enteritidis in the environment of experimentally infected laying hens by an electrostatic sampling device. Avian Dis. 2004;48:148–154.15077808
  • Heber AJ, Peugh MW, Lutgring KR, Zimmerman NJ, Linton RH. Poultry slaughtering plants: concentrations of microbial aerosols in poultry slaughtering and processing plants. ASHRAE Trans. 2006;1: 644–655.
  • Bull S, Allen V, Domingue G, et al Sources of Campylobacter spp. colonizing housed broiler flocks during rearing. Appl Environ Microbiol. 2006;72:645–652.16391102
  • Chinivasagam H, Tran T, Blackall P. Impact of the Australian litter re-use practice on Salmonella in the broiler farming environment. Food Res Int. 2012;45:891–896.
  • Kwon Y, Woodward C, Pillai S, et al Litter and aerosol sampling of chicken houses for rapid detection of Salmonella typhimurium contamination using gene amplification. J Ind Microbiol Biotechnol. 2000;24: 379–382.
  • Chinivasagam H, Tran T, Maddock L, Gale A, Blackall P. Mechanically ventilated broiler sheds: a possible source of aerosolized Salmonella, Campylobacter, and Escherichia coli. Appl Environ Microbiol. 2009;75: 7417–7425.19801461
  • Volkova VV, Bailey RH, Rybolt ML, et al Inter-relationships of Salmonella status of flock and grow-out environment at sequential segments in broiler production and processing. Zoonoses Public Health. 2010;57:463–475.19912607
  • Vieira-Pinto M, Tenreiro R, Martins C. Unveiling contamination sources and dissemination routes of Salmonella spp. in pigs at a Portuguese slaughterhouse through macrorestriction profiling by pulsed-field gel electrophoresis. Int J Food Microbiol. 2006;110:77–84.16828912
  • Corrier D, Byrd J, Hargis B, et al Presence of Salmonella in the crop and ceca of broiler chickens before and after preslaughter feed withdrawal. Poult Sci. 1999;78:45–49.10023745
  • Ramirez G, Sarlin L, Caldwell D, et al Effect of feed withdrawal on the incidence of Salmonella in the crops and ceca of market age broiler chickens. Poult Sci. 1997;76:654–656.9106896
  • Berrang M, Meinersmann R, Buhr R, Reimer N, Philips R, Harrison M. Presence of Campylobacter inthe respiratory tract of broiler carcasses before and after commercial scalding. Poult Sci. 2003;82:1995–1999.14717560
  • Luber P. Cross-contamination versus undercooking of poultry meat or eggs which risks need to be managed first? Int J Food Microbiol. 2009;134:21–28.19272666
  • Brynestad S, Braute L, Luber P, Bartelt E. Quantitative microbiological risk assessment of campylobacteriosis cases in the German population due to consumption of chicken prepared in homes. Int J Risk Assess Manag. 2008;8:194–213.
  • Adesiyun A, Offiah N, Seepersadsingh N, et al Microbial health risk posed by table eggs in Trinidad. Epidemiol Infect. 2005;133: 1049–1056.16274501
  • McDermid A, Lever M. Survival of Salmonella Enteritidis PT4 and Salm. typhimurium Swindon in aerosols. Lett Appl Microbiol. 1996;23: 107–109.8987450
  • Donnison A, Ross C, Noonan M, Fisher G, Waller J. Bacterial survival and dispersal in spray irrigation aerosols. New Zealand Journal of Agricultural Research. 2004;47:575–585.
  • Brooks J, McLaughlin M, Scheffler B, Miles D. Microbial and antibiotic resistant constituents associated with biological aerosols and poultry litter within a commercial poultry house. Sci Total Environ. 2010;408:4770–4777.20655094
  • Pedersen TB, Olsen JE, Bisgaard M. Persistence of Salmonella Senftenberg in poultry production environments and investigation of its resistance to desiccation. Avian Pathol. 2008;37:421–427.18622860
  • Fedde M. Relationship of structure and function of the avian respiratory system to disease susceptibility. Poult Sci. 1998;77:1130–1138.9706077
  • Watson RR, Fu Z, West JB. Morphometry of the extremely thin pulmonary blood-gas barrier in the chicken lung. Am J Physiol Lung Cell Mol Physiol. 2007;292:L769–L777.17114279
  • Maina JN, Jimoh SA. Structural failures of the blood-gas barrier and the epithelial-epithelial cell connections in the different vascular regions of the lung of the domestic fowl, Gallus gallus variant domesticus, at rest and during exercise. Biol Open. 2013;2:267–276.23519074
  • West JB, Fu Z, Deerinck TJ, Mackey MR, Obayashi JT, Ellisman MH. Structure-function studies of blood and air capillaries in chicken lung using 3D electron microscopy. Respir Physiol Neurobiol. 2010;170: 202–209.20038456
  • Maina J. Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives. Biol Rev. 2002;77:97–152.11911376
  • Watson RR, Fu Z, West JB. Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs. Respir Physiol Neurobiol. 2008;160:208–214.17981521
  • Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiol Rev. 2005;85:811–844.15987796
  • Maina JN. Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev. 2006;81:545–579.17038201
  • Mitchell B, Buhr R, Berrang M, Bailey J, Cox N. Reducing airborne pathogens, dust and Salmonella transmission in experimental hatching cabinets using an electrostatic space charge system. Poult Sci. 2002;81: 49–55.11885899
  • Kiama S, Adekunle J, Maina J. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes, and epithelial cells of the chicken and the rat. J Anat. 2008;213: 452–463.18643797
  • Smialek M, Tykalowski B, Stenzel T, Koncicki A. Local immunity of the respiratory mucosal system in chickens and turkeys. Pol J Vet Sci. 2011;14:291–297.21721419
  • de Geus ED, Rebel JM, Vervelde L. Induction of respiratory immune responses in the chicken: Implications for development of mucosal avian influenza virus vaccines. Vet Q. 2012;32:75–86.22862156
  • Van Alstine WG, Arp LH. Histologic evaluation of lung and bronchus-associated lymphoid tissue in young turkeys infected with Bordetella avium. Am J Vet Res. 1988;49:835–839.3400920
  • Bienenstock J, McDermott MR. Bronchus-and nasal-associated lymphoid tissues. Immunol Rev. 2005;206:22–31.16048540
  • Reese S, Dalamani G, Kaspers B. The avian lung-associated immune system: a review. Vet Res. 2006;37:311–324.16611550
  • King M. Mucus and its role in airway clearance and cytoprotection In: Hamid Q, Shannon J, Martin J, et al, editors. Physiologic Basis of Respiratory Disease. Hamilton, ON, Canada: BC Decker Inc.; 2005.
  • Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86:245–278.16371599
  • Sato S, Kiyono H. The mucosal immune system of the respiratory tract. Curr Opin Virol. 2012;2:225–232.22542216
  • Henning A, Schneider M, Bur M, Blank F, Gehr P, Lehr C-M. Embryonic chicken trachea as a new in vitro model for the investigation of mucociliary particle clearance in the airways. AAPS PharmSciTech. 2008;9:521–527.18431652
  • Davison TF, Kaspers B, Schat KA. Avian Immunology. London, UK: Academic Press; 2008.
  • Hayter R, Besch E. Airborne-particle deposition in the respiratory tract of chickens. Poult Sci. 1974;53:1507–1511.4850471
  • Radon K, Danuser B, Iversen M, et al Air contaminants in different European farming environments. Ann Agric Environ Med. 2002;9: 41–48.12088396
  • Harbaugh E, Trampel D, Wesley I, Hoff S, Griffith R, Hurd H. Rapid aerosol transmission of Salmonella among turkeys in a simulated holding-shed environment. Poult Sci. 2006;85:1693–1699.17012158
  • Baskerville A, Humphrey T, Fitzgeorge R, et al Airborne infection of laying hens with Salmonella Enteritidis phage type 4. Vet Rec. 1992;130: 395–398.1609467
  • Weinack OM, Snoeyenbos G, Smyser C, Soerjadi-Liem A. Influence of Mycoplasma gallisepticum, infectious bronchitis, and cyclophosphamide on chickens protected by native intestinal microflora against Salmonella typhimurium or Escherichia coli. Avian Dis. 1984;28:416–425.6331365
  • Nagaraja KV, Emery DA, Jordan KA, Sivanandan V, Newman JA, Pomeroy BS. Effect of ammonia on the quantitative clearance of Escherichia coli from lungs, air sacs, and livers of turkeys aerosol vaccinated against Escherichia coli. Am J Vet Res. 1984;45:392–395.6370056
  • Dwars RM, Matthijs MG, Daemen AJ, van Eck JH, Vervelde L, Landman WJ. Progression of lesions in the respiratory tract of broilers after single infection with Escherichia coli compared to superinfection with E. coli after infection with infectious bronchitis virus. Vet Immunol Immunopathol. 2009;127:65–76.19004507
  • Popy N, Asaduzzaman M, Miah M, Siddika A, Sufian M, Hossain M. Pathological study on the upper respiratory tract infection of chickens and isolation, identification of causal bacteria. Bangl Vet. 2012;28: 60–69.
  • Whyte RT. Aerial pollutants and the health of poultry farmers. World’s Poult Sci J. 1993;49:139–153.
  • Donham K, Blake J, Patterson P. Occupational health hazards and recommended exposure limits for workers in poultry buildings In: Proceedings of the 2000 National Poultry Waste Management Symposium, Ocean City, MD, USA, October 16–18, 2000 National Poultry Waste Management Symposium Committee; 2000.
  • Fagerland JA, Arp LH. A morphologic study of bronchus-associated lymphoid tissue in turkeys. Am J Anat. 2005;189:24–34.
  • Haley PJ. Species differences in the structure and function of the immune system. Toxicology. 2003;188:49–71.12748041
  • Fagerland JA, Arp LH. Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: age-related differences. Reg Immunol. 1993;5:28–36.8347468
  • Bienenstock J. Bronchus-associated lymphoid tissue and the source of immunoglobulin-containing cells in the mucosa. Environ Health Perspect. 1980;35:39–42.6967811
  • Basnet H, Kwon HJ, Cho SH, et al Reproduction of fowl typhoid by respiratory challenge with Salmonella Gallinarum. Avian Dis. 2008;52: 156–159.18459315
  • Fagerland JA, Arp LH. Structure and development of bronchus-associated lymphoid tissue in conventionally reared broiler chickens. Avian Dis. 1993;37:10–18.8452486
  • Lahellec C, Colin P, Bennejean G, Paquin J, Guillerm A, Debois J. Influence of resident Salmonella on contamination of broiler flocks. Poult Sci. 1986;65:2034–2039.3822983
  • Watson RR, Fu Z, West JB. Morphometry of the extremely thin pulmonary blood-gas barrier in the chicken lung. Am J Physiol Lung Cell Mol Physiol. 2007;292:L769–L777.17114279
  • Maina J, King A. The thickness of avian blood-gas barrier: qualitative and quantitative observations. J Anat. 1982;134:553–562.7107515
  • West JB. Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1625–R1634.19793953
  • Marteyn B, West NP, Browning DF, et al Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 2010;465: 355–358.20436458
  • West J, Mathieu-Costello O. Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. Ann Rev Physiol. 1999;61:543–572.10099701
  • West JB, Mathieu-Costello O. Stress failure of pulmonary capillaries as a limiting factor for maximal exercise. Eur J Appl Physiol Occup Physiol. 1995;70:99–108.7768245
  • West JB, Watson RR, Fu Z. The honeycomb-like structure of the bird lung allows a uniquely thin blood-gas barrier. Respir Physiol Neurobiol. 2006;152:115–118.16431166
  • Lichtenberger M. Determination of indirect blood pressure in the companion bird. J Exotic Pet Med. 2005;14:149–152.
  • Maina JN, Cowley HM. Ultrastructural characterization of the pulmonary cellular defences in the lung of a bird, the rock dove, Columba livia. Proc R Soc Lond B. 1998;265:1567–1572.
  • Klika E, Scheuermann DW, Groodt-Lasseel D, Bazantova I, Switka A. Pulmonary macrophages in birds barn owl (Tyto tyto alba), domestic fowl (Gallus gallus f. domestica), quail (Coturnix coturnix), and pigeons (Columbia livia). Anat Rec. 1996;246:87–97.8876827
  • Klika E, Scheuermann DW, Bazantova I, Switka A. Anchoring and support system of pulmonary gas-exchange tissue in four bird species. Acta Anat. 1997;159:30–41.9522895
  • Stearns RC, Barnas G, Walski M, Brain J. Deposition and phagocytosis of inhaled particles in the gas exchange region of the duck, Anas platyrhynchos. Respir Physiol. 1987;67:23–36.3547533
  • Toth TE. Nonspecific cellular defense of the avian respiratory system: a review. Dev Comp Immunol. 2000;24:121–139.10717283
  • Toth T, Siegel P, Veit H. Cellular defense of the avian respiratory system. Influx of phagocytes: elicitation versus activation. Avian Dis. 1987;31:861–867.3442537
  • Nganpiep L, Maina J. Composite cellular defence stratagem in the avian respiratory system: functional morphology of the free (surface) macrophages and specialized pulmonary epithelia. J Anat. 2002;200: 499–516.12090396
  • Toth TE, Curtiss III R, Veit H, Pyle R, Siegel P. Reaction of the avian respiratory system to intratracheally administered avirulent Salmonella typhimurium. Avian Dis. 1992;36:24–29.1567305
  • Toth TE, Siegel PB. Cellular defense of the avian respiratory tract: paucity of free-residing macrophages in the normal chicken. Avian Dis. 1986;30:67–75.3729871
  • Toth T, Veit H, Gross W, Siegel P. Cellular defense of the avian respiratory system: protection against Escherichia coli airsacculitis by Pasteurella multocida-activated respiratory phagocytes. Avian Dis. 1988;32:681–687.3060087
  • Toth TE, Siegel P. Cellular defense of the avian respiratory system: dose-response relationship and duration of response in intratracheal stimulation of avian respiratory phagocytes by a Pasteurella multocida bacterin. Avian Dis. 1993;37:756–762.8257367
  • Ficken MD, Edwards JF, Lay JC. Induction, collection, and partial characterization of induced respiratory macrophages of the turkey. Avian Dis. 1986;30:766–771.3814014
  • Farmer C. On the origin of avian air sacs. Respir Physiol Neurobiol. 2006;154:89–106.16787763
  • Crespo R, Yamashiro S, Hunter DB. Development of the thoracic air sacs of turkeys with age and rearing conditions. Avian Dis. 1998;42: 35–44.9533079
  • Bezuidenhout A. Light and electron microscopic study of the thoracic respiratory air sacs of the fowl. Anat Histol Embryol. 2005;34: 185–191.15929735
  • Bezuidenhout AJ, Groenewald HB, Soley JT. An anatomical study of the respiratory air sacs in ostriches. Onderstepoort J Vet Res. 1999;66: 317–325.10689704
  • Aviagen Ltd. Broiler Management Manual ROSS 308. Scotland, UK: Aviagen Ltd; 2009.
  • Kallapura G, Morgan MJ, Pumford NR, et al Evaluation of the respiratory route as a viable portal of entry form Salmonella in poultry vía intratracheal challenge of Salmonella Enteritidis and Salmonella typhimurium. Poult Sci. 2014;93:340–346.24570455
  • Schauser K, Olsen JE, Larsson L-I. Immunocytochemical studies of Salmonella typhimurium invasion of porcine jejunal epithelial cells. J Med Microbiol. 2004;53:691–695.15184542
  • Winter SE, Winter MG, Godinez I, et al A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. PLoS Pathog. 2010;6: e1001060.20808848
  • Kallapura G, Botero A, Layton S, et al Evaluation of recovery of Salmonella from trachea and ceca in commercial poultry. J Appl Poult Res. 2014;23:132–136.
  • Toth TE, Curtiss R 3rd, Veit H, Pyle RH, Siegel PB. Reaction of the avian respiratory system to intratracheally administered avirulent Salmonella typhimurium. Avian Dis. 1992;36:24–29.1567305
  • Winter SE, Thiennimitr P, Winter MG, et al Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–429.20864996
  • Kallapura G, Kogut MH, Morgan MJ, et al Fate and dissemination of Salmonella Senftenberg post oral, intratracheal or intravenous challenge in broiler chickens. Avian Pathol. Epub 2014 May 13.
  • Qureshi MA, Heggen CL, Hussain I. Avian macrophage: effector functions in health and disease. Dev Comp Immunol. 2000;24:103–119.10717282
  • Arp L. Effect of passive immunization on phagocytosis of blood-borne Escherichia coli in spleen and liver of turkeys. Am J Vet Res. 1982;43: 1034–1040.7049015
  • Seo SH, Peiris M, Webster RG. Protective cross-reactive cellular immunity to lethal A/Goose/Guangdong/1/96-like H5N1 influenza virus is correlated with the proportion of pulmonary CD8 T cells expressing gamma interferon. J Virol. 2002;76:4886–4890.11967305
  • Seo SH, Webster RG. Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J Virol. 2001;75:2516–2525.11222674
  • Dar A, Munir S, Vishwanathan S, et al Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res. 2005;110:41–55.15845254
  • Hillier LW, Miller W, Birney E, et al Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.15592404
  • Rothwell L, Young JR, Zoorob R, et al Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. J Immunol. 2004;173:2675–2682.15294985
  • Vazquez-Torres A, Xu Y, Jones-Carson J, et al Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science. 2000;287:1655–1658.10698741
  • Gill N, Wlodarska M, Finlay BB. The future of mucosal immunology: studying an integrated system-wide organ. Nat Immunol. 2010;11: 558–560.20562837
  • Guth AM, Janssen WJ, Bosio CM, Crouch EC, Henson PM, Dow SW. Lung environment determines unique phenotype of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2009;296: L936–L946.19304907