109
Views
2
CrossRef citations to date
0
Altmetric
Articles

Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta)

, , , , , , , , , & show all
Pages 442-449 | Received 27 Sep 2005, Accepted 16 Jan 2006, Published online: 28 May 2019

REFERENCES

  • Badger M.R., Andrews J.T., Whitney S.M., Ludwig M., Yellowlees D.C., Leggat W. & Price G.D. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms. Canadian Journal of Botany 76: 1052–1071.
  • Beardall J. 1991. Effects of photon flux density on the 'CO2-concentrating' mechanism of the cyanobacterium Anabaena variabilis. Journal of Plankton Research 13, supplement: 133–141.
  • Beardall J., Griffiths H. & Raven J.A. 1982. Carbon isotope discrimination and the CO2 accumulating mechanism in Chlorella emersonii. Journal of Experimental Botany 33: 729–737.
  • Calvert H.E. 1976. Culture studies on some Florida species of Caulerpa: morphological responses to reduced illumination. British Phycological Journal 11: 203–214.
  • Calvert H.E., Dawes C.J. & Borowitzka M.A. 1976. Phylogenetic relationships of Caulerpa (Chlorophyta) based on comparative chloroplast ultrastructure. Journal of Phycology 12: 149–162.
  • Chisholm J.R.M. & Jaubert J.M. 1987. Photoautotrophic metabolism of Caulerpa taxifolia (Chlorophyta) in the N W Mediterranean. Marine Ecology Progress Series 28: 327–332.
  • Collado-Vides L. & Robledo D. 1999. Morphology and photosynthesis of Caulerpa (Chlorophyta) in relation to growth form. Journal of Phycology 35: 325–330.
  • Eilers P.H.C. & Peeters J.C.H. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling 42: 199–215.
  • Fama P., Wysor B., Kooistra W.H.C.F. & Zuccarello G.C. 2002. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from the chloroplast tufA gene. Journal of Phycology 38: 1040–1050.
  • Franklin L. & Badger M.R. 2001. A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude fluorescence and mass spectrometry. Journal of Phycology 37: 756–767.
  • Gacia E., Littler M.M. & Littler D.S. 1996. The relationship between morphology and photosynthesis parameters within the polymorphic genus Caulerpa. Journal of Experimental Marine Biology and Ecology 204: 209–224.
  • Gattuso J.-P. & Jaubert J. 1985. Photosynthesis and respiration of Caulerpa racemosa (Chlorophyta, Caulerpales) grown in aquaria: effects of light and temperature. Botanica Marina 28: 327–332.
  • Giordano M. & Maberly S.C. 1989. Distribution of carbonic anhydrase in British marine algae. Oecologia 81: 534–539.
  • Giordano M., Beardall J. & Raven J.A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annual Review of Plant Biology 66: 99–131.
  • Graham L.E. & Wilcox L.W. 2000. Algae. Prentice Hall, Upper Saddle River, NJ. 640 pp.
  • Hanson D., Andrews T.J. & Badger M.R. 2002. Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerophyta). Functional Plant Biology 29: 407–416.
  • Jeffrey S.W. & Humphrey G.F. 1975. New spectrophotometric equations for determining chlorophylls a, b, and c in higher plants, algae and natural phytoplankton. Biochemie und Physiologie Pflanzen 167: 191–194.
  • Johnston A.M. 1991. The acquisition of inorganic carbon by marine macroalgae. Canadian Journal of Botany 69: 1123–1132.
  • Johnston A.M., Maberly S.C. & Raven J.A. 1992. The acquisition of inorganic carbon by four red macroalgae from different habitats. Oceologia 92: 317–326.
  • Kübler J.E. & Raven J.A. 1994. Consequences of light-limitation in three rhodophytes. Marine Ecology Progress Series 110: 203–208.
  • Kübler J.E. & Raven J.A. 1995. Interactions between inorganic carbon supply and light supply in Palmaria palmata (Rhodophyta). Journal of Phycology 31: 369–375.
  • Kübler J.E., Johnston A.M. & Raven J.A. 1999. The effects of reduced and elevated CO2 and O2 on the seaweed, Lomentaria articulata. Plant, Cell and Environment 22: 53–66.
  • Littler M.M. & Littler D.S. 1984. Relationships between macroalgal form groups and substrata stability in a subtropical rocky-intertidal system. Journal of Experimental Marine Biology and Ecology 74: 12–34.
  • Longstaff B.J., Kildea T., Runcie J.W., Cheshire A., Dennison W.C., Hurd C., Kana T., Raven J.A. & Larkum A.W.D. 2002. In situ measurements of marine plant photosynthesis. A comparison of oxygen exchange and electron transport rate methods using the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research 74: 281–293.
  • Maberly S.C. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. Journal of Phycology 26: 439–449.
  • Maberly S.C., Raven J.A. & Johnston A.M. 1992. Discrimination between 12C and 13C by marine plants. Oecologia 91: 481–492.
  • MacFarlane J.J. & Raven J.A. 1990. C, N and P nutrition of Lemanea mamillosa Kutz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, Scotland. Plant, Cell and Environment 13: 1–13.
  • Miyachi S., Tsuzuki M. & Avramova S.T. 1983. Utilization modes of inorganic carbon for photosynthesis in various species of Chlorella. Plant and Cell Physiology 24: 441–451.
  • Miyamura S. & Hori T. 1991. DNA is present in the pyrenoid core of the siphonous green-algae of the genus Caulerpa and the yellowgreen algae of the genus Dichotomosiphon. Protoplasma 161: 192–196.
  • Morita E., Abe T., Tsuzuki M., Fujiwara S., Sato N., Hirata A., Sonoike K. & Nozaki H. 1998. Presence of the CO2-concentrating mechanisms in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta). Planta 204: 269–276.
  • Morita E., Abe T., Tsuzuki M., Fujiwara S., Sato N., Hirata A., Sonoike K. & Nozaki H. 1999. Role of pyrenoids in the CO2-concentrating mechanism: comparative morphology, physiology and molecular phylogenetic analysis of closely related strains of Chlamydomonas and Chloromonas. Planta 208: 365–372.
  • Murru M. & Sandgren C.D. 2004. Habitat matters for inorganic carbon acquisition in 38 species of red macroalgae (Rhodophyta) from Puget Sound, Washington, USA. Journal of Phycology 40: 837–845.
  • Nozaki H., Onishi K. & Morita E. 2002. Differences in pyrenoid morphology are correlated with differences in the rbcL genes of members of the Chloromonas lineage (volvocales, Chlorophyceae). Journal of Molecular Evolution 55: 414–430.
  • Pillmann A., Woolcott G.Q., Olsen J.L., Stam W.T. & King R.J. 1997. Interand intraspecific genetic variation in Caulerpa (Chlorophyta) based on nuclear rDNA ITS sequences. European Journal of Phycology 32: 379–386.
  • Ranellio R., Lorenti M., Bruret C. & Buia M.C. 2004. Photosynthetic plasticity of an invasive variety of Caulerpa racemosa in a coastal Mediterranean area: light harvesting capacity and seasonal acclimation. Marine Ecology Progress Series 271: 113–120.
  • Raven J.A. 1997. Inorganic carbon acquisition by marine autotrophs. Advances in Botanical Research 27: 85–209.
  • Raven J.A. & Beardall J. 1981. Carbon dioxide as the exogenous inorganic carbon source for Batrachospermum and Lemanea. British Phycological Journal 16: 165–175.
  • Raven J.A. & Beardall J. 2003. Carbon acquisition in mechanisms in algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Photosynthesis in Algae (Ed. by A.W.D. Larkum, S.E. Douglas & J.A. Raven), pp. 157–181. Kluwer, Dordrecht.
  • Raven J.A. & Johnston A.M. 1991. Photosynthetic carbon assimilation by Prasiola stipitata (Prasiolales, Chlorophyta) under emersed and submersed conditions: relationship to the taxonomy of Prasiola. British Phycological Journal 26: 247–257.
  • Raven J.A, Beardall J. & Griffiths H. 1982. Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia 53: 68–78.
  • Raven J.A., Johnston A.M., Newman J.R. & Scrimgeour C.M. 1994. Inorganic carbon acquisition by aquatic photolithotrophs of the Dighty Burn, Angus, UK: uses and limitations of natural abundance measurements of carbon isotopes. New Phytologist 127: 271–286.
  • Raven J.A., Walker D.I., Johnston A.M., Handley L.L. & Kübler J.E. 1995. Implications of 13C natural abundance for photosynthetic performance by marine macrophytes in their natural environment. Marine Ecology Progress Series 123: 193–205.
  • Raven J.A., Johnston A.M., Saville P.J. & Mcinroy S.G. 2000. Carbon isotope ratios of photolithotrophs from Allt meal nan Damh, a burn at Ardeonaig, Perthshire, and their ecological significance. Botanical Journal of Scotland 52: 1–15.
  • Raven J.A., Walker D.I., Jensen K.R., Handley L.L. & McInroy S.G. 2001. What fraction of the organic carbon in saccoglossans is obtained from photosynthesis by kleptoplastids? An investigation using the natural abundance of stable isotopes. Marine Biology 138: 537–545.
  • Raven J.A., Johnston A.M., Kübler J.E., Korb R.E., McInroy S.G., Handley L.L., Scrimgeour C.M., Walker D.I., Beardall J., Vanderklift M., Fredriksen S. & Dunton K.H. 2002a. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Functional Plant Biology 29: 355–378.
  • Raven J.A., Johnston A.M., Kübler J.E., Korb R.E., McInroy S.G., Handley L.L., Scrimgeour C.M., Walker D.I., Beardall J., Clayton M.N., Vanderklift M., Fredriksen S. & Dunton K.H. 2002b. Seaweeds in cold seas: evolution and carbon acquisition. Annals of Botany 90: 525–536.
  • Raven J.A., Ball L.A., Beardall J., Giordano M. & Maberly S.C. 2005. Algae lacking carbon concentrating mechanisms. Canadian Journal of Botany 83: 879–890.
  • Reiskind J.B. & Bowes G. 1991. The role of phosphoenol-pyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proceedings of the National Academy of Sciences USA 88: 2883–2887.
  • Robeldo D. & Freile-Pelegrín Y. 2005. Seasonal variation in photosynthesis and biochemical composition of Caulerpa spp. (Bryopsidales, Chlorophyta) from the Gulf of Mexico. Phycologia 44: 312–319.
  • Roberts S. & Beardall J. 1999. Inorganic carbon acquisition by two species of Antarctic macroalgae: Porphyra endivifolia (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales). Polar Biology 21: 310–315.
  • Sherlock D.J. & Raven J.A. 2001. Interactions between carbon dioxide and oxygen in the photosynthesis of three species of marine red algae. Botanical Journal of Scotland 53: 33–43.
  • Smith E.C. & Griffiths H. 1996a. The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. Planta 198: 6–16.
  • Smith E.C. & Griffiths H. 1996b. A pyrenoid-based carbon-concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. New Phytologist 200: 203–212.
  • Surif M.B. & Raven J.A. 1989. Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78: 97–105.
  • White A. J. & Critchley C. 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research 59: 63–72.
  • Wilbur K.M. & Anderson N.G. 1948. Electrometric and colorimetric determination of carbonic anhydrase. Journal of Biological Chemistry 176: 147–154.
  • Womersley H.B.S. 1984. The marine benthic flora of southern Australia. Part I. Handbook Committee, Government of South Australia. 329 pp.
  • Ye L.-X., Ritz D.A., Fenton G.E. & Lewis M.E. 1991. Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis. Journal of Experimental Marine Biology and Ecology 145: 161–174.
  • Young E.B. & Beardall J. 2005. Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron and light availability. Canadian Journal of Botany 83: 917–928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.