130
Views
12
CrossRef citations to date
0
Altmetric
Articles

Impacts of nitrogen limitation on the sinking rate of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae)

, , &
Pages 288-294 | Received 20 Jun 2012, Accepted 02 Feb 2013, Published online: 13 May 2019

REFERENCES

  • Alldredge A. L., Passow U. & Logan B. E. 1993. The abundance and significance of a class of large transparent organic particles in the ocean. Deep-Sea Research Part I: Oceanographic Research Papers 40: 1131–1140.
  • Alldredge A. L. & Silver M. W. 1988. Characteristics, dynamics and significance of marine snow. Progress in Oceanography 20: 41–82.
  • Beardall J., Sobrino C. & Stojkovic S. 2009a. Interactions between the impacts of ultraviolet radiation, elevated Co2, and nutrient limitation on marine primary producers. Photochemical and Photobiological Sciences 8: 1257–1265.
  • Beardall J., Stojkovic S. & Larsen S. 2009b. Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecology and Diversity 2: 191–205.
  • Beardall J., Young E. & Roberts S. 2001. Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences 63: 44–69.
  • Behrenfeld M. J., O'malley R. T., Siegel D. A., Mcclain C. R., Sarmiento J. L., Feldman G. C., Milligan A. J., Falkowski P. G., Letelier R. M. & Boss E. S. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444: 752–755.
  • Beman J.M., Chow C.-E., King A.L., Feng Y., Fuhrman J. A., Andersson A., Bates N.R., Popp B. N. & Hutchins D. A. 2011. Global declines in oceanic nitrification rates as consequence of ocean acidification. Proceedings of the National Academy of Sciences USA 108: 208–213.
  • Biermann A. & Engel A. 2010. Effect of CO2 on the properties and sinking velocity of aggregates of the coccolithophore Emiliania huxleyi. Biogeosciences 7: 1017–1029.
  • Bligh E.G. & Dyer W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.
  • Corzo A., Morillo J. A. & Rodríguez S. 2000. Production of transparent exopolymer particles (TEP) in cultures of Chaetoceros calcitrans under nitrogen limitation. Aquatic Microbial Ecology 23: 63–72.
  • De Bodt C., Van Oostende N., Harlay J., Sabbe K. & Chou L. 2010. Individual and interacting effects of pC02 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 7: 1401–1412.
  • De La Rocha C.L. & Passow U. 2007. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Research Part II: Topical Studies in Oceanography 54: 639–658.
  • Doney S. C. 2006. The dangers of ocean acidification. Scientific American 294: 58–65.
  • Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A. & Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.
  • Engel A. 2000. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. Journal of Plankton Research 22: 485–497.
  • Engel A. 2002. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research 24: 49–53.
  • Engel A., Thoms S., Riebesell U., Rochelle-Newall E. & Zondervan I. 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428: 929–932.
  • Falkowski P.G., Barber R. T. & Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production (special Section: Chemistry and Biology of the Oceans). Science 281:200–206.
  • Fernández E., Balch W. M., Holligan P. M. & Marañón E. 1994. High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series 22: 13–22.
  • Field C. B., Behrenfeld M. J., Randerson J. T. & Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.
  • Granum E. & Myklestad S. M. 2002. A simple combined method for determination of β-1, 3-glucan and cell wall polysaccharides in diatoms. Hydrobiologia 477: 155–161.
  • Granum E., Kirkvold S. & Myklestad S. M. 2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Marine Ecology Progress Series 242: 83–94.
  • Guckert J. B., Cooksey K. E. & Jackson L. L. 1988. Lipid sovent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. Journal of Microbiological Methods 8: 139–149.
  • Hein M., Pedersen M. F. & Sand Jensen K. 1995. Size-dependent nitrogen uptake in micro-and macroalgae. Marine Ecology Progress Series 118: 247–254.
  • Holland D. P. 2010. Sinking rates of phytoplankton filaments orientated at different angles: theory and physical model. Journal of Plankton Research 32: 1327–1336.
  • Hong Y., Smith W. O. & White A. M. 1997. Studies on transparent exopolymer particles (TEP) produced in the Ross sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae). Journal of Phycology 33: 368–376.
  • Jeffrey S. W. & Humphrey G. F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.
  • Keller M. D., Selvin R. C., Claus W. & Guillard R. R. L. 1987. Media for the culture of oceanic ultraphytoplankton. Journal of Phycology 23: 633–638.
  • Klaas C. & Archer D. E. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Global Biogeochemical Cycles 16: 1–13.
  • Kusaikin M., Ermakova S., Shevchenko N., Isakov V., Gorshkov A., Vereshchagin A., Grachev M. & Zvyagintseva T. 2010. Structural characteristics and antitumor activity of a new chrysolaminaran from the diatom alga Synedra acus. Chemistry of Natural Compounds 46: 1–4.
  • Lecourt M., Muggli D.L. & Harrison P. J. 1996. Comparison of growth and sinking rates of non-coccolith and coccolith-forming strains of Emiliania huxleyi (Prymnesiophyceae) grown under different irradiances and nitrogen sources. Journal of Phycology 32: 17–21.
  • Lefebvre S. C., Benner I., Stillman J. H., Parker A. E., Drake M. K., Rossignol P.E., Okimura K. M., Komada T. & Carpenter E. J. 2012. Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle. Global Change Biology 18: 493–503.
  • Linschooten C., Van Blejswijk J. D. L., Van Emburg P. R., De Vrind J. P. M., Kempers E. S., Westbroek P. & De Vrind-De Jong E. W. 1991. Role of the light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae). Journal of Phycology 27: 82–86.
  • Lowry O. H., Rosebrough N. J., Farr A.L. & Randall R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.
  • Meehl G. A., Stocker T. F., Collins W. D., Friedlingstein P., Gaye A. T., Gregory J.M., Kitoh A., Knutti R., Murphy J. M., Noda A., Raper S. C. B., Watterson I. G., Weavera J. & Zhao Z.-C. [Eds.] 2007. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge university Press, Cambridge.
  • Müller M. N., Beaufort L., Bernard O., Pedrotti M. L., Talec A. & Sciandra A. 2012. Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta). Biogeosciences Discussions 9: 4979–5010.
  • Paasche E. 1998. Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 33: 33–42.
  • Paasche E. 2002. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529.
  • Pachauri R. K. & Reisinger A. [Eds.] 2007. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva.
  • Passow U. & Alldredge A. L. 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography 40: 1326–1335.
  • Raven J., Caldeira K., Elderfield H., Hoegh-Guldberg O., Liss P., Riebesell U., Shepherd J., Turley C. & Watson A. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. The Cloyvedon Press, Cardiff.
  • Riebesell U., Schulz K. G., Bellerby R. G. J., Botros M., Fritsche P., Meyerhofer M., Neill C., Nondal G., Oschlies A., Wohlers J. & Zollner E. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.
  • Smayda T. J. 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology — An Annual Review 8: 353–414.
  • Sundquist E. T. 1993. The global carbon dioxide budget. Science 259: 934–941.
  • Walsby A. E. & Holland D. P. 2006. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning. Journal of the Royal Society Interface 3: 429–439.
  • Walsby A. E. & Xypolyta A. 1977. The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt. British Phycological Journal 12: 215–223.
  • White D. C., Davis W. M., Nickels J. S., King J. D. & Bobbie R. J. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40: 51–62.
  • Young J. R. & Ziveri P. 2000. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research Part II: Topical Studies in Oceanography 47: 1679–1700.
  • Zondervan I., Zeebe R. E., Rost B. & Riebesell U. 2001. Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Global Biogeochemical Cycles 15: 507–516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.