192
Views
7
CrossRef citations to date
0
Altmetric
Articles

Elevated temperature and changed carbonate chemistry: effects on calcification, photosynthesis, and growth of Corallina officinalis (Corallinales, Rhodophyta)

, , &
Pages 280-286 | Received 31 May 2017, Accepted 28 Nov 2017, Published online: 08 Mar 2019

REFERENCES

  • Adey W.H.& Macintyre I.G. 1973. Crustose coralline algae: a re-evaluation in the geological sciences. GSA Bulletin 84: 883–904.
  • Adey W.H.& McKibbin D.L. 1970. Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnion corallioides Crouan in the Ria de Vigo. Botanica Marina 13: 100–106.
  • Ahlgren G. 1987. Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190.
  • Brown M.B., Edwards M.S.& Kim K.Y. 2014. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29: 203–215.
  • Chisholm J.R.M. 2000. Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnology and Oceanography 45: 1476–1484.
  • Collins M., Knutti R., Arblaster J., Dufresne J.-L., Fichefet T., Friedlingstein P., Gao X., Gutowski W.J., Johns T., Krinner G., Shongwe M., Tebaldi C., Weaver A.J.& Wehner M. 2013. Long-term climate change: projection, commitments and irreversibility. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, N. Nauels, Y. Xia, V. Bex& P.M. Midgley), Cambridge University Press, Cambridge, UK. 1033 pp.
  • Colthart B.J.& Johansen H.W. 1973. Growth rate of Corallina officinalis (Rhodophyta) at different temperatures. Marine Biology 18: 46–49.
  • Comeau S., Carpenter R.C.& Edmunds P.J. 2016. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proceedings of the Royal Society of London B: Biological Science 280: 20122374.
  • Cornwall C.E., Hepburn C.D., Pritchard D., Currie K.I., McGraw C.M., Hunter K.A.& Hurd C.L. 2012. Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. Journal of Phycology 48: 137–144.
  • Egilsdottir H., Olafsson J.& Martin S. 2016. Photosynthesis and calcification in the articulated coralline alga Ellisolandia elongate (Corallinales, Rhodophyta) from intertidal rock pools. European Journal of Phycology 51: 59–70.
  • El Haïkali B., Bensoussan N., Romano J.-C.& Bousquet V. 2004. Estimation of photosynthesis and calcification rates of Corallina elongata Ellis and Solander, 1786 by measurements of dissolved oxygen, pH and total alkalinity. Scientia Marina 68: 45–56.
  • Flukes E.B., Johnson C.R.& Ling S.D. 2012. Forming sea urchin barrens from the inside out: an alternative pattern of overgrazing. Marine Ecology Progress Series 464: 174–194.
  • Freiwald A.& Henrich R. 1994. Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41: 963–984.
  • Guy-Haim T., Silverman J., Raddatz S., Wahl M., Israel A.& Rilov G. 2016. The carbon turnover response to thermal stress of a dominant coralline alga on the fast warming Levant coast. Limnology and Oceanography 61: 1120–1133.
  • Harley C.D.G., Anderson K.M., Demes K.W., Jorve J.P., Kordas R.L., Coyle T.A.& Graham M.H. 2012. Effects of climate change on global seaweed community. Journal of Phycology 48: 1064–1078.
  • Hofmann L.C., Straub S.& Bischof K. 2013. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. Journal of Experimental Botany 64: 899–908.
  • Jeong H.J., Lee K., Yoo Y.D., Kim J.-M., Kim T.H., Kim M., Kim J.-H.& Kim K.Y. 2016. Reduction in CO2 uptake rate of red tide dinoflagellates due to mixotrophy. Algae 31: 351–362.
  • Johnson M.D., Price N.N.& Smith J.E. 2014. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ 2:e411; DOI 10.7717/peerj.411.
  • Kamenos N.A.& Law A. 2010. Temperature controls on coralline algal skeleton growth. Journal of Phycology 46: 331–335.
  • Kang E.J.& Kim K.Y. 2016. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae 31: 49–59.
  • Kim J.-H., Kang E.J., Park M.-G., Lee B.-G.& Kim K.Y. 2011. Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea. Journal of Applied Phycology 23: 421–432.
  • Kim J.-H., Lam S.M.N.& Kim K.Y. 2013. Photoacclimation strategies of temperate coralline alga Corallina officinalis: a perspective on photosynthesis, calcification, photosynthetic pigment contents and growth. Algae 28: 355–363.
  • Kim J.-H., Kang E. J., Kim K., Jeong H.J., Edwards M.S., Park M.G., Lee B.-G.& Kim K.Y. 2015. Evaluation of carbon fluxes in vegetative bay based on ecosystem production and CO2 exchange driven by coastal autotrophs. Algae 30: 121–137.
  • Kim J.-H., Kang E.J., Edwards M.S., Lee K., Jeong H.J.& Kim K.Y. 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31: 243–256.
  • Latham H. 2008. Temperature stress-induced bleaching of the coralline alga Corallina officinalis: a role for the enzyme bromoperoxidase. Bioscience Horizon 1: 104–113.
  • Lewis E.& Wallace D.W.R. 1998. Program developed for CO2 system calculation. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
  • Martin S.& Gattuso J.P. 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology 15: 2089–2100.
  • Martin S., Castets M.D.& Clavier J. 2006. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquatic Botany 85: 121–128.
  • McCoy S.J.& Kamenos N.A. 2015. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology 51: 6–24.
  • Millero F.J., Zhang J.Z., Lee K.& Campell M. 1993. Titration alkalinity of seawater. Marine Chemistry 44: 153–165.
  • Noisette F., Egilsdottir H., Davoult D.& Martin S. 2013. Physiological responses of temperate coralline algae from contrasting habitats to near-future ocean acidification. Journal of Experimental Marine Biology and Ecology 448: 179–187.
  • Pentecost A. 1978. Calcification and photosynthesis in Corallina officinalis L. using 14CO2 method. European Journal of Phycology 13: 383–390.
  • Smith S.V. 1978. Alkalinity depletion to estimate the calcification of coral reefs in flowing waters. In: Coral reefs: research methods. Monographs on Oceanographic Methodology, vol. 5 (Ed. by D.R. Stoddart, R.E. Dohanner, M. Rakat& R.E. Johannes), UNESCO Press, Paris. 397 pp.
  • Smith S.V.& Key G.S. 1975. Carbon dioxide and metabolism in marine environments. Limnology and Oceanography 20: 493–495.
  • Tait L.W.& Schiel D.R. 2013. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages. PLoS ONE: e74413. doi:10.1371/journal.pone.0074413.
  • Takahashi T., Olafsson J., Goddard J.G., Chipman D.W.& Sutherland S.C. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles 7: 843–878.
  • Vásquez-Elizondo R.& Enríquez S. 2016. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Scientific Report 6: 19030 | DOI: 10.1038/srep19030.
  • Vermeij M.J.A., van Moorselaar I., Engelhard S., Hörnlein C., Vonk S.M.& Visser P.M. 2010. The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS ONE 5: e14312. doi:10.1371/journal.pone.0014312.
  • Vermeij M.J.A., Dailer M.L.& Smith C.M. 2011. Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs. Marine Ecology Progress Series 422: 1–7.
  • Williamson C.J., Najorka J., Perkins R., Yallop M.L.& Brodle J. 2014. Skeletal mineralogy of geniculate corallines: providing context for climate change and ocean acidification research. Marine Ecology Progress Series 513: 71–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.