317
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of Alkylator-Associated Acute Myeloid Leukemia

, &
Pages 719-729 | Published online: 03 Aug 2006

Bibliography

  • Bhatia S , SklarC: Second cancers in survivors of childhood cancer.Nature Rev. Cancer2, 124–132 (2002).
  • Leone G , VosoMT, SicaS, MorosettiR, PaganoL: Therapy-related leukemias: susceptibility, prevention and treatment.Leuk. Lymphoma41, 255–276 (2001).
  • Schoch C , KernW, SchnittgerS, HiddemannW, HaferlachT: Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML.Leukemia18, 120–125 (2004).
  • van L eeuwen FE, Chorus AM, van den Belt-Dusebout AW et al.: Leukemia risk following Hodgkin's disease: relation to cumulative dose of alkylating agents, treatment with teniposide combinations, number of episodes of chemotherapy, and bone marrow damage. J. Clin. Oncol.12, 1063–1073 (1994).
  • Larson RA , Le Beau MM: Therapy-related myeloid leukaemia: a model for leukemogenesis in humans. Chem. Biol. Interact.153–154, 187–195 (2005).
  • Frohling S , SchollC, GillilandDG, Levine RL: Genetics of myeloid malignancies: pathogenetic and clinical implications. J. Clin. Oncol.23, 6285–6295 (2005).
  • Bertram L , TanziRE: The genetic epidemiology of neurodegenerative disease.J. Clin. Invest.115, 1449–1457 (2005).
  • Permutt MA , WassonJ, CoxN: Genetic epidemiology of diabetes.J. Clin. Invest.115, 1431–1439 (2005).
  • Side L , TaylorB, CayouetteM et al.: Homozygous inactivation of the NF1gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N. Engl. J. Med.336, 1713–1720 (1997).
  • Jacks T , ShihTS, SchmittEM, BronsonRT, BernardsA, WeinbergRA: Tumour predisposition in mice heterozygous for a targeted mutation in Nf1.Nature Genet.7, 353–361 (1994).
  • Papageorgio C , SeiterK, FeldmanEJ: Therapy-related myelodysplastic syndrome in adults with neurofibromatosis.Leuk. Lymphoma32, 605–608 (1999).
  • Mahgoub N , TaylorBR, Le Beau MM et al.: Myeloid malignancies induced by alkylating agents in Nf1 mice. Blood93, 3617–3623 (1999).
  • Chao RC , PyzelU, FridlyandJ et al.: Therapy-induced malignant neoplasms in Nf1 mutant mice. Cancer Cell8, 337–348 (2005).
  • Wang Q , StacyT, BinderM, Marin-Padilla M, Sharpe AH, Speck NA: Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA93, 3444–3449 (1996).
  • Okuda T , van Deursen J, Hiebert SW, Grosveld G, Downing JR: AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell84, 321–330 (1996).
  • Song WJ , SullivanMG, LegareRD et al.: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukemia. Nature Genet.23, 166–175 (1999).
  • Roumier C , FenauxP, LafageM, ImbertM, EclacheV, PreudhommeC: New mechanisms of AML1 gene alteration in hematological malignancies.Leukemia17, 9–16 (2003).
  • Osato M : Point mutations in the RUNX1/AML1 gene: another factor in RUNX leukemia.Oncogene23, 4284–4296 (2004).
  • Harada H , HaradaY, NiimiH, KyoT, KimuraA, InabaT: High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia.Blood103, 2316–2324 (2004).
  • Zhang DE , ZhangP, WangND, HetheringtonCJ, DarlingtonGJ, Tenen DG: Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl Acad. Sci. USA94, 569–574 (1997).
  • Zhang P , J Iwasaki-Arai, Iwasaki H et al.: Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP α. Immunity21, 853–863 (2004).
  • Porse BT , BryderD, K Theilgaard-Monch et al.: Loss of C/EBP α cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J. Exp. Med.202, 85–96 (2005).
  • Smith ML , CavenaghJD, ListerTA, FitzgibbonJ: Mutation of CEBPA in familial acute myeloid leukemia.N. Engl. J. Med.351, 2403–2407 (2004).
  • Sellick GS , SpendloveHE, CatovskyD, Pritchard-JonesK, HoulstonRS: Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia.Leukemia19, 1276–1278 (2005).
  • Pabst T , MuellerBU, ZhangP et al.: Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nature Genet.27, 263–70 (2001).
  • Preudhomme C , SagotC, BoisselN et al.: Favorable prognostic significance ofCEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood100, 2717–2723 (2002).
  • Pabst T , MuellerBU, HarakawaN et al.: AML1-ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nature Med.7, 444–451 (2001).
  • Radomska HS , BasseresDS, ZhengR et al.: Block of C/EBPα function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J. Exp. Med.203, 371–381 (2006).
  • Kaeferstein A , KrugU, TiesmeierJ et al.: The emergence of a C/EBPα mutation in the clonal evolution of MDS towards secondary AML. Leukemia17, 343–349 (2003).
  • Scott EW , SimonMC, AnastasiJ, SinghH: Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages.Science265, 1573–1577 (1994).
  • Dakic A , MetcalfD, L Di Rago, Mifsud S, Wu L, Nutt SL: PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med.201, 1487–1502 (2005).
  • Rosenbauer F , WagnerK, KutokJL et al.: Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nature Genet.36, 624–630 (2004).
  • Walter MJ , ParkJS, RiesRE et al.: Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARα. Proc. Natl Acad. Sci. USA102, 12513–12518 (2005).
  • Vangala RK , Heiss-NeumannMS, Rangatia JS et al.: The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood101, 270–277 (2003).
  • Cook WD , McCawBJ, HerringC et al.: PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood104, 3437–3444 (2004).
  • Moreau-Gachelin F , TavitianA, Tambourin P: Spi-1 is a putative oncogene in virally induced murine erythroleukemias. Nature331, 277–280 (1988).
  • Moreau-Gachelin F , WendlingF, MolinaT et al.: Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol. Cell. Biol.16, 2453–2463 (1996).
  • Mueller BU , PabstT, OsatoM et al.: Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood100, 998–1007 (2002).
  • Dohner K , TobisK, BischofT et al.: Mutation analysis of the transcription factor PU.1 in younger adults (16 to 60 years) with acute myeloid leukemia: a study of the AML Study Group Ulm (AMLSG ULM). Blood102, 3850–3851 (2003).
  • Lamandin C , SagotC, RoumierC et al.: Are PU.1 mutations frequent genetic events in acute myeloid leukemia (AML)? Blood100, 4680–4681 (2002).
  • Suraweera N , MeijneE, MoodyJ et al.: Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene24, 3678–3683 (2005).
  • Qu CK , ShiZQ, ShenR, TsaiFY, Orkin SH, Feng GS: A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol. Cell Biol.17, 5499–5507 (1997).
  • Tartaglia M , MehlerEL, GoldbergR et al.: Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genet.29, 465–468 (2001).
  • Mohi MG , WilliamsIR, DearolfCR et al.: Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell7, 179–191 (2005).
  • Loh ML , ReynoldsMG, VattikutiS et al.: PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia18, 1831–1834 (2004).
  • Chantrain CF , JijonP, T De Raedt et al.: Therapy-related acute myeloid leukemia in a child with Noonan syndrome and clonal duplication of the germline PTPN11 mutation. Pediatr. Blood Cancer (Epub ahead of print) (2005).
  • Bacher U , HaferlachT, SchochC, KernW, SchnittgerS: NRAS mutations in AML: biology, cytogenetics, and prognosis – a study on 2502 patients.Blood (2006).
  • Bowen DT , FrewME, HillsR et al.: RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood106, 2113–2119 (2005).
  • Christiansen DH , AndersenMK, DestaF, Pedersen-BjergaardJ: Mutations of genes in the receptor tyrosine kinase (RTK)/RAS–BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia.Leukemia19, 2232–2240 (2005).
  • Malkinson AM : Molecular comparison of human and mouse pulmonary adenocarcinomas.Exp. Lung Res.24, 541–555 (1998).
  • Braun BS , TuvesonDA, KongN et al.: Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl Acad. Sci. USA101, 597–602 (2004).
  • Hisada M , GarberJE, FungCY, Fraumeni JF Jr, Li FP: Multiple primary cancers in families with Li-Fraumeni syndrome. J. Natl Cancer Inst.90, 606–611 (1998).
  • Dumont P , LeuJI, Della Pietra AC 3rd, George DL, Murphy M: The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nature Genet.33, 357–365 (2003).
  • Linggi B , C Muller-Tidow, L van de Locht et al.: The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nature Med.8, 743–750 (2002).
  • Christiansen DH , AndersenMK, Pedersen-BjergaardJ: Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis.J. Clin. Oncol.19, 1405–1413 (2001).
  • Side LE , CurtissNP, TeelK et al.: RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer39, 217–223 (2004).
  • Taniguchi T , AD D'Andrea: The molecular pathogenesis of fanconi anemia: recent progress. Blood (2006).
  • Kutler DI , SinghB, SatagopanJ et al.: A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood101, 1249–1256 (2003).
  • Tischkowitz MD , MorganNV, Grimwade D et al.: Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia. Leukemia18, 420–425 (2004).
  • Lensch MW , TischkowitzM, Christianson TA et al.: Acquired FANCA dysfunction and cytogenetic instability in adult acute myelogenous leukemia. Blood102, 7–16 (2003).
  • King-Underwood L , RenshawJ, Pritchard-Jones K: Mutations in the Wilms' tumor gene WT1 in leukemias. Blood87, 2171–2179 (1996).
  • Takahashi T , YamamotoR, TanakaK, KamadaN, MiyagawaK: Mutation analysis of the WT1 gene in secondary leukemia.Leukemia14, 1316–1317 (2000).
  • Shearer P , KapoorG, BeckwithJB, TakashimaJ, BreslowN, GreenDM: Secondary acute myelogenous leukemia in patients previously treated for childhood renal tumors: a report from the National Wilms Tumor Study Group.J. Pediatr. Hematol. Oncol.23, 109–111 (2001).
  • Nichols KE , LevitzS, ShannonKE et al.: Heterozygous germline ATMmutations do not contribute to radiation-associated malignancies after Hodgkin's disease. J. Clin. Oncol.17, 1259 (1999).
  • Meadows AT , BaumE, F Fossati-Bellani et al.: Second malignant neoplasms in children: an update from the Late Effects Study Group. J. Clin. Oncol.3, 532–538 (1985).
  • Crispino JD : GATA1 in normal and malignant hematopoiesis.Semin. Cell Dev. Biol.16, 137–147 (2005).
  • Ahmed M , SternbergA, HallG et al.: Natural history of GATA1 mutations in Down syndrome. Blood103, 2480–2489 (2004).
  • Greene ME , MundschauG, WechslerJ et al.: Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome. Blood Cells Mol. Dis.31, 351–356 (2003).
  • Harigae H , XuG, SugawaraT, IshikawaI, TokiT, ItoE: The GATA1 mutation in an adult patient with acute megakaryoblastic leukemia not accompanying Down syndrome.Blood103, 3242–3243 (2004).
  • Ley TJ , MinxPJ, WalterMJ et al.: A pilot study of high-throughput, sequence-based mutational profiling of primary human acute myeloid leukemia cell genomes. Proc. Natl Acad. Sci. USA100, 14275–14280 (2003).
  • Allan JM , RabkinCS: Genetic susceptibility to iatrogenic malignancy.Pharmacogenomics6, 615–628 (2005).
  • Felix CA , WalkerAH, LangeBJ et al.: Association of the CYP3A4 genotype with treatment-related leukemia. Proc. Natl Acad. Sci. USA95, 13176–13181 (1998).
  • Roddam PL , AllanJM, RollinsonS et al.: Poor metabolizer status at the cytochrome P450 2C9 and 2D6 loci does not modulate susceptibility to therapy-related acute myeloid leukaemia. Br. J. Haematol.121, 192–194 (2003).
  • Allan JM , WildCP, RollinsonS et al.: Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc. Natl Acad. Sci. USA98, 11592–11597 (2001).
  • Allan JM , SmithAG, WheatleyK et al.: Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood104, 3872–3877 (2004).
  • Worrillow LJ , TravisLB, SmithAG et al.: An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin. Cancer Res.9, 3012–3020 (2003).
  • Seedhouse C , BaintonR, LewisM, Harding A, Russell N, Das-Gupta E: The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood100, 3761–3766 (2002).
  • Fenske TS , McMahonC, EdwinD et al.: Identification of candidate alkylator-induced cancer susceptibility genes by whole genome scanning in mice. Cancer Res.66, 5029–5038 (2006).
  • Watanabe D , EzoeS, FujimotoM et al.: Suppressor of cytokine signalling-1 gene silencing in acute myeloid leukaemia and human haematopoietic cell lines. Br. J. Haematol.126, 726–735 (2004).
  • Weng AP , FerrandoAA, LeeW et al.: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science306, 269–271 (2004).
  • Wolfler A , ErkelandSJ, BodnerC et al.: A functional single-nucleotide polymorphism of the G-CSF receptor gene predisposes individuals to high-risk myelodysplastic syndrome. Blood105, 3731–3736 (2005).
  • Cassinat B , C Bellanne-Chantelot, A Notz-Carrere et al.: Screening for G-CSF receptor mutations in patients with secondary myeloid or lymphoid transformation of severe congenital neutropenia. A report from the French neutropenia register. Leukemia18, 1553–1555 (2004).
  • Schnittger S , KohlTM, LeopoldN et al.: D324N single nucleotide polymorphism in the FLT3 gene is associated with higher risk of myeloid leukemias. Genes Chromosomes Cancer45, 332–337 (2006).
  • Ridge SA , WorwoodM, OscierD, JacobsA, PaduaRA: FMS mutations in myelodysplastic, leukemic, and normal subjects.Proc. Natl Acad. Sci. USA87, 1377–1380 (1990).
  • Leroy H , RoumierC, N Grardel-Duflos et al.: Unlike AML1, CBFβ gene is not deregulated by point mutations in acute myeloid leukemia and in myelodysplastic syndromes. Blood99, 3848–3850 (2002).
  • Eguchi M , Eguchi-IshimaeM, GreavesM: Molecular pathogenesis of MLL-associated leukemias.Int. J. Hematol.82, 9–20 (2005).
  • Jamal R , GaleRE, ShaunN, ThomasB, WheatleyK, LinchDC: The retinoblastoma gene (RB1) in acute myeloid leukaemia: analysis of gene rearrangements, protein expression and comparison of disease outcome.Br. J. Haematol.94, 342–351 (1996).
  • Davis JN , McGheeL, MeyersS: The ETO (MTG8) gene family.Gene303, 1–10 (2003).
  • Nucifora G , L Laricchia-Robbio, Senyuk V: EVI1 and hematopoietic disorders: History and perspectives. Gene368, 1–11 (2006).
  • Bellanne-Chantelot C , ClauinS, LeblancT et al.: Mutations in the ELA2 gene correlate with more severe expression of neutropenia: a study of 81 patients from the French Neutropenia Register. Blood103, 4119–4125 (2004).
  • Tanner SM , AustinJL, LeoneG et al.: BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc. Natl Acad. Sci. USA98, 13901–13906 (2001).
  • Abramovich C , HumphriesRK: Hox regulation of normal and leukemic hematopoietic stem cells.Curr. Opin. Hematol.12, 210–216 (2005).
  • Thiede C , KochS, CreutzigE et al.: Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood107(10), 4011–4020 (2006).
  • Ellis NA , GrodenJ, YeTZ et al.: The Bloom's syndrome gene product is homologous to RecQ helicases. Cell83, 655–666 (1995).
  • Vulliamy TJ , MarroneA, KnightSW, Walne A, Mason PJ, Dokal I: Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood107(7), 2680–2685 (2005).
  • Majeed F , JadkoS, FreedmanMH, DrorY: Mutation analysis of SBDS in pediatric acute myeloblastic leukemia.Pediatr. Blood Cancer45, 920–924 (2005).
  • Derry JM , OchsHD, FranckeU: Isolation of a novel gene mutated in Wiskott-Aldrich syndrome.Cell78, 635–644 (1994).

Website

  • Washington University School of Medicine CREATE Pharmacogentic Research Network website. http://pharmacogenetics.wustl.edu

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.