903
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolic Profiling Technologies for Biomarker Discovery in Biomedicine and Drug Development

, , &
Pages 1055-1075 | Published online: 20 Oct 2006

Bibliography

  • Pauling L , RobinsonAB, TeranishiR, Cary P: Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc. Natl. Acad Sci. USA68 , 2374–2376 (1971).
  • Webb KS , LinGH: Urinary fibronectin – potential as a biomarker in prostatic-cancer.Investig. Urol.17 , 401–404 (1980).
  • Sorenson AW , RosenshineN, TepperSA, KritchevskyD: Serum hexosaminidase as a possible biomarker for human cancer.J. Medicine15 , 409–415 (1984).
  • Phillips M , GleesonK, HughesJM et al.: Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet353, 2897–1898 (1999).
  • Phillips M , CataneoRN, DitkoffBA et al.: Volatile markers of breast cancer in the breath. Breast J.9 , 184–191 (2003).
  • Spanel P , SmithD, HollandTA, Al Singary W, Elder JB: Analysis of formaldehyde in the head space of urine from bladder and prostate cancer patients using selected ion flowtube mass spectrometry. Rapid Commun. Mass. Spectrom.13 , 1354–1359 (1999).
  • Glassbrook N , RyalsJ: A systematic approach to biochemical profiling.Curr. Opin. Plant Biol.4 , 186–190 (2001).
  • Nicholson JK , LindonJC, HolmesE: Metabonomics: understanding the metabolic responss of living systems to pathophysiological stimuli via multivariate statistical analysis of biologicla NMR spectroscopic data.Xenobiotica29(11) , 1181–1189 (1999).
  • Fiehn O : Metabolomics – the link between genotypes and phenotypes.Plant Mol. Biol.48 , 155–171 (2002).
  • Nicholson JK , ConnellyJ, LindonJC, HolmesE: Metabonomics: a platform for studying drug toxicity and gene function.Nature Rev. Drug Disc.1 , 153–161 (2002).
  • Oliver SG , WinsonMK, KellDB, Baganz F: Systematic functional analysis of the yeast genome. Trends Biotech.16 , 373–378 (1998).
  • Goodacre R , VaidyanathanS, DunnWB, HarriganGG, KellDB: Metabolomics by numbers: acquiring and understanding global metabolite data.Trends Biotech.22 , 245–252 (2004).
  • Watkins SM , GermanJB: Metabolomics and biochemical profiling in drug discovery and development.Curr. Opin. Mol. Ther.4(3) , 224–228 (2002).
  • Clayton TA , LindonJC, CloarecO et al.: Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature440 , 1073–1077 (2006).
  • Ernst RR , BodenhausenG, WokaunA: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford, UK (1990).
  • Goldman M : Quantum Description of High-Resolution NMR in Liquids. Oxford University Press, Oxford, UK (1991).
  • Kovacs H , MoskauD, SpraulM: Cryogenically cooled probes – a leap in NMR technology.Prog. NMR Spectrosc.46 , 131–155 (2005).
  • Keun HC , EbbelsTMD, AnttiH et al.: Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem. Res. Tox.15 , 1380–1386 (2002).
  • Prince WS : Water signal suppression in NMR spectroscopy.Ann. Rep. NMR Spectr.38 , 289–354 (1999).
  • Potts BC , DeeseAJ, StevensGJ, ReilyMD, RobertsonDG, TheissJ: NMR of biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component analysis of urine from rat and mouse.J. Pharm. Biomed. Anal.26 , 463–76 (2001).
  • Hoult DI : Solvent peak saturation with single phase and quadrature Fourier transformation.J. Magn. Reson.21 , 337–347 (1976).
  • Kumar A , ErnstRR, WüthrichK: A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton–proton cross-relaxation networks in biological macromolecules.Biochem. Biophys. Res. Commun.95 , 1–6 (1980).
  • Ogg RJ , KingsleyPB, TaylorJS: WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy.J. Magn. Reson.104B , 1–10 (1994).
  • Lenz EM , BrightJ, WilsonID, MorganSR, NashAFP: A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects.J. Pharm. Biomed. Anal.33 , 1103–1115 (2003).
  • Meiboom S , GillD.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Rev. Sci. Instrum.29 , 688–691 (1958).
  • Gibbs SJ , Johnson Jr CS: A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J. Magn. Reson.93 , 395–402 (1991).
  • Wider G , DötschV, and Wüthrich K: Self-compensating pulsed magnetic-field gradients for short recovery times. J. Magn. Reson.108A , 255–258 (1994).
  • Morris KF , Johnson Jr CS: Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc.114 , 3139–3141 (1992).
  • Griffin JL , WilliamsHJ, SangE, Nicholson JK: Abnormal lipid profile of dystrophic cardiac tissue as demonstrated by one- and two-dimensional magic-angle spinning 1H NMR spectroscopy. Magn. Reson. Med.46 , 249–255 (2001).
  • Garrod S , HumpferE, SpraulM et al.: High-resolution magic angle spinning l H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn. Reson. Med.41 , 1108–1118 (1999).
  • Keun HC , BeckonertO, GriffinJL et al.: Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal. Chem.74 , 4588–4593 (2002).
  • Boros LG , BrackettDJ, HarriganGG: Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP).Curr. Cancer Drug Targets3 , 445–453 (2003).
  • Ben-Yoseph O , Badar-GofferRS, Morris PG, Bachelard, HS: Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-NMR study. Biochem. J.291 , 915–919 (1993).
  • Jones JG , SolomonMA, SherryAD, Jeffrey FMH, Malloy CR: 13C NMR measurements of human gluconeogenic fluxes after ingestion of [U-13C] propionate, phenylacetate, and acetaminophen. Am. J. Physiol.275 , E843–E852 (1998).
  • Dumas ME , CanletC, AndréF , Vercauteren J, Paris A: Metabonomic assessment of physiological disruptions using 1H-13C HMBC-NMR spectroscopy combined with pattern recognition procedures performed on filtered variables. Anal. Chem.74 , 2261–2273 (2002).
  • Günther H : NMR Spectroscopy. Wiley & Sons Inc. NY, USA (1992).
  • Holmes E , FoxallPJD, SpraulM, Farrant RD, Nicholson JK, Lindon JC: 750 MHz 1H NMR spectroscopy characterization of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J. Pharm. Biomed. Anal.15 , 1647–1659 (1997).
  • Sweatman BC , FarrantRD, HolmesE, GhauriFY, NicholsonJK, LindonJC: 600 MHz 1H-NMR spectroscopy of human cerebrospinal fluid: effects of sample manipulation and assignment of resonances.J. Pharm. Biomed. Anal.11 , 651–664 (1993).
  • Lynch MJ , MastersJ, PryorJP et al.: Ultra high field NMR spectroscopic studies on human seminal fluid, seminal vesicle and prostatic secretions. J. Pharm. Biomed. Anal.12 , 19–25 (1994).
  • Nicholson JK , FoxallPJD: 750 MHz 1H and 1H-l3C NMR spectroscopy of human blood plasma.Anal. Chem.67 , 793–811 (1996).
  • Bax A , DavisDG: MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy.J. Magn. Reson.65 , 355–360 (1985).
  • Bax A , FreemanR: Investigation of complex networks of spin–spin coupling by two-dimensional NMR.J. Magn. Reson.44 , 542–561 (1981).
  • Derome A , WilliamsonM: Rapid-pulsing artifacts in double-quantum-filtered COSY.J. Magn. Reson.88 , 177–185 (1990).
  • Ancian B , BourgeoisI, DauphinJF, Shaw AA: Artifact-free pure absorption PFG-enhanced DQF-COSY spectra including a gradient pulse in the evolution period. J. Magn. Reson.125A , 348–354 (1997).
  • Nicholls AW , HolmesE, LindonJC et al.: Metabonomic investigations into hydrazine toxicity in the rat. Chem. Res. Toxicol.14 , 975–987 (2001).
  • Bollard ME , GarrodS, HolmesE et al.: High-resolution 1H and 1H-13C magic angle spinning NMR spectroscopy of rat liver. Magn. Reson. Med.42 , 201–207 (2000).
  • Liu M , NicholsonJK and Lindon JC: High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Anal. Chem.68 , 3370–3376 (1996).
  • Palmer III AG, Cavanagh J, Wright PE, Rance M: Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson.93 , 151–170 (1991).
  • Kay LE , KeiferP, SaarinenT: Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity.J. Am. Chem. Soc.114 , 10663–10665 (1992).
  • Hurd RE , JohnBK: Gradient-enhanced proton-detected heteronuclear multiple-quantum coherence spectroscopy.J. Magn. Reson.91 , 648–653 (1991).
  • Bax A , SummersMF: Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR.J. Am. Chem. Soc.108 , 2093–2094 (1986).
  • Ringeissen S , ConnorSC, BrownHR et al.: Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers8 , 240–271 (2003).
  • Nicholls AW , NicholsonJK, HaseldenJK, WaterfieldCJ: A metabonomic approach to the investigation of drug-induced phospholipidosis: an NMR spectroscopy and pattern recognition study.Biomarkers5 , 410–423 (2000).
  • Hoch JC , SternAS: NMR Data Processing. John Wiley & Sons Inc., NY, USA (1997).
  • Traficante DD , RajabzadehM: Optimum window function for sensitivity enhancement of NMR signals.Conc. Magn. Reson.12 , 83–101 (2000).
  • Dieterle F , RossA, SchlotterbeckG, Senn H: Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem.78 , 4281–4290 (2006).
  • Dieterle F , RossA, SchlotterbeckG, Senn H: Metabolite projection analysis for fast identification of metabolites in metabonomics. application in an amiodarone study. Anal. Chem.78 , 3551–3561 (2006).
  • Schnackenberg L , BegerRD, DraganY: NMR-based metabonomic evaluation of livers from rats chronically treated with tamoxifen, mestranol, and phenobarbital.Metabolomics1 , 87–94 (2005).
  • Cañas-Montalvo B , López-FerrerD, Ramos-FernándezA, CamafeitaE, CalvoE: Mass spectrometry technologies for proteomics.Brief Funct. Genomic. Proteomic.4 , 295–320 (2006).
  • Glinski M , WeckwerthW: The roll of mass spectrometry in plant systems biology.Mass Spectrom. Rev.25 , 173–214 (2006).
  • Want EJ , CravattBF, SiuzdakG: The expanding role of mass spectrometry in metabolite profiling and characterization.Chem Bio Chem6 , 1941–1951 (2005).
  • Fiehn O , KopkaJ, DormannP, AltmannT, TretheweyRN, WillmitzerL: Metabolite profiling for plant functional genomics.Nat. Biotechnol.18 , 1157–1161 (2000).
  • Koek MM , MuilwijkB,van der Werf, MJ, Hankemeier T: Microbial metabolomics with gas chromatography/mass spectrometry. Anal. Chem.78 , 1272–1281 (2006).
  • Fiehn O : Combining genomic, metabolome analysis and biochemical modelling to understand metabolic networks.Comp. Funct. Genom.2 , 155–168 (2001).
  • Horning EC , HorningMG: Metabolic profiles: gas-phase methods for analysis of metabolites.Clin. Chem.17 , 802–809 (1971).
  • Niwa T : Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine.J. Chromatogr.379 , 313–345 (1986).
  • Rashed MS : Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases.J. Chromatogr. B.758 , 27–48 (2001).
  • Röschinger W , OlgemöllerB, FingerhutR, LieblB, RoscherAA: Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases.Eur. J. Pediatr.162 , 67–76 (2003).
  • Zytkovic TH , FitzgeraldEF, MarsdenD et al.: Tandem mass spectrometric analysis for amino, organic and fatty acid disorders in newborn dries blood spots: a two-year summary from the New England Newborn Screening Program. Clin. Chem.47 , 1945–1955 (2001).
  • Levy HL , AlbersS: Genetic screening of newborms.Annu. Rev. Genomics Hum. Genet.1 , 139 (2000).
  • Deng C , WangB, LiuL: Fast diagnosis of neonatal phenylketonuria by gas chromatography-mass spectrometry following microwave-assisted silylation.Chromatographia62 , 617–621 (2005).
  • Shellie RA , WelthagenW, ZrostlikovJ et al.: Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts. J. Chromatogr. A1086 , 83–90 (2005).
  • van Mispelaar VG , TasAC, SmildeAK, SchoenmakersPJ, van Asten AC: Quantitative analysis of target components by comprehensive two-dimensional gas chromatography. J. Chromatogr. A101915–29 (2003).
  • Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications. Cole RB (Ed.), Wiley, NY, USA (1997).
  • Gaskell SJ : Electrospray principles and practice.J. Mass Spectrom.32 , 677–688 (1997).
  • Niessen WMA : Progress in liquid chromatography-mass spectrometry instrumentation and ist impact on high-throughput screening.J. Chromatogr. A1000 , 413–436 (2003).
  • Pramanik BN , GangulyAK, GrossML: Applied Electrospray mass Spectrometry. Marcel Dekker, NY, USA (2002).
  • Wilson ID , PlumbR, GrangerJ, MajorH, WilliamsR, LenzEM: HPLC-MS based methods fort he study of metabonomics.J. Chromatogr. B817 , 67–76 (2005).
  • Goodacre R , VaidyanathanS, BianchiG, KellDB: Metabolic profiling using direct infusion electrospray ionisation mass spectrometry fort he characterisation of olive oil.Analyst127 , 1457–1462 (2002).
  • Tolstikov VV , LommenA, NakanishiK, TanakaN, FiehnO: Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomicsAnal. Chem.75 , 6737–6740 (2003).
  • Crockford DJ , HolmesE, LindonJC et al.: Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem.78 , 363–371 (2006).
  • Nordström A , O‘MailleG, QinC, Siudzak G: Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal. Chem.78 , 3289–3295 (2006).
  • Kapron JT , paceE, Van Pelt CK, Henion J: Quantitation of midazolam in human plasma by automated chip-based infusion nanoelectrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom.17 , 2019–2026 (2003).
  • Leuthold LA , GrivetC, AllenM, Baumert M, Hopfgartner G: Simultaneous selected reaction monitoring, MS/MS and MS3 quantitation for the analysis of pharmaceutical compounds in human plasma using chip-based infusion. Rapid Commun. Mass Spectrom.18 , 1995–2000 (2004).
  • Boernsen KO , GatzekS, ImbertG: controlled protein precipitation in combination with chip-based nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma.Anal. Chem.77 , 7255–7264 (2005).
  • Staack RF , VaresioE, HopfgartnerG: The combination of liquid chromatography/tandem mass spectrometry and chip-based infusion for improved screening and characterization of drug metabolites.Rapid Commun. Mass Spectrom.19 , 618–626 (2005).
  • Wang G , HsiehY, KorfmacherWA: Comparison of atmospheric pressure chemical ionization, electrospray ionization, and atmospheric pressure photoionization for the determination of cyclosporin A in rat plasma.Anal. Chem.77 , 541–548 (2005).
  • Raffaelli A , SabaA: Atmospheric pressure photoionization mass spectrometry,Mass Spectrom. Rev.22 , 318–331 (2003).
  • Robb DB , CoveyTR, BruinsAP: Atmospheric pressure photoionization: an ionization method for liquid chromatography mass spectrometry.Anal. Chem.72 , 3653–3659 (2000).
  • Cody RB , LaraméeJA, DurstHD: Versatile new ion source for the analysis of materials in open air under ambient conditions.Anal. Chem.77 , 2297–2302 (2005).
  • Morris HR , PaxtonT, DellA et al.: High sensitivity collisional-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom.10 , 889–896 (1996).
  • Cox KA , Higher throughput metabolite identification in drug discovery: current capabilities and future trends. Am. Pharm. Rev.4 , 45–22 (2001).
  • Hopfgartner G , HusserC, ZellM: Rapid screening and characterization of drug metabolites using a new quadrupole–linear ion trap mass spectrometer.J. Mass Spectrom.38 , 138–150 (2003).
  • Le Blanc JC , HagerJW, IllisiuAM et al.: Unique scanning capabilities of a new hybrid linear ion trial mass spectrometer (Q TRAP) used for high sensitivity proteomics applications. Proteomics3 , 859–869 (2003).
  • Syka JEP , MartoJA, BaiDL et al.: Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome. Res.3 , 621–626 (2004).
  • Xia YQ , MillerJD, BakhtiarR, Franklin RB, Liu DQ: Use of a quadrupole linear ion trap mass spectrometer in metabolite identification and bioanalysis. Rapid Commun. Mass Spectrom.17 , 1137–1145 (2003).
  • Makarov A , DenisovE, LangeO, Horning S: Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom.17 , 977–982 (2006).
  • Martin SE , ShabanowitzJ, HuntDF, Marto JA: Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem.72 , 4266–4274 (2000).
  • Plumb RS , StumpCL, GorenasteinMV et al.: Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential fort he screening of rat urine in drug development. Rapid Commun. Mass Spectrom.16 , 1991–1996 (2002).
  • Vorst O , de Vos CHR, Lommen A et al.: A non-directed approach to differential analysis of multiple LC-MS-derived metabolic profiles. Metabolomics1 , 169–189 (2005).
  • Katjamaa M , OresicM: Processing methods for differential analysis of LC/MS profile data.BMC Bioinformatics6 , 179 (2005).
  • Idborg H , ZamaniL, EdlundPO, Schuppe-KoistinenI, JacobssonSP: Metabolic fingerprinting of rat urine by LC/MS Part 2. Data pretreatment methods for handling of complex data.J. Chromatogr. B828 , 14–20 (2005).
  • Idborg H , EdlundPO, JacobssonSP: Multivariate approaches for efficient detection of potential metabolites from liquid chromatography/mass spectrometry data.Rapid Commun. Mass Spectrom.18 , 944–954 (2004).
  • Winding W , PhalpJM, PayneAW: A noise and background reduction method for component detection in liquid chromatography/mass spectrometry.Anal. Chem.68 , 3602–3606 (1996).
  • Halket JM , PrzyborowskaA, SteinSE, MallardWG, DownS, ChalmersRA: Deconvolution gas chromatography/mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders.Rapid Commun. Mass Spectrom.13 , 279–284 (1999).
  • Stolt , R, Torgrip RJO, Lindberg J et al.: Second-order peak detection for multicomponent high-resolution LC/MS data. Anal. Chem.78 , 975–983 (2006).
  • Duran AL , YangJ, WangL, SummerLW: Metabolomics spectral formatting, alignment and conversion tools (MSFACTs).Bioinformatics19 , 2283–2293 (2003).
  • Smith CA , WantEJ, O‘MailleG, Abagyan R, Siudzak G: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem.78 , 779–787 (2006).
  • Broeckling CD , ReddyIR, DuranIR, Zhao X, Sumner LW: MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal. Chem.78(13) , 4334–4341. (2006).
  • Kopka J , SchauerN, KruegerS et al.: [email protected]: the golm metabolome database. Bioinformatics15 , 1635–1638 (2005).
  • Smith CA , O‘MailleG, WantEJ et al.: METLIN a metabolite mass spectral database. Ther. Drug Monit.27 , 747–751 (2005).
  • Holmes E , NicholsonJK, NichollsAW et al.: The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine. Chemometr. Intell. Lab.44 , 245–255 (1998).
  • Forshed J , Schuppe-KoistinenI, Jacobsson SP: Peak alignment of NMR signals by means of a genetic algorithm. Anal. Chim. Acta487 , 189–199 (2003).
  • Waters NJ , WaterfieldCJ, FarrantRD, HomesE, NicholsonJK: Metabonomic deconvolution of embedded toxicity: application to thioacetamide hepato- and nephrotoxicity.Chem. Res. Toxicol.18 , 639–654 (2005).
  • Jansen JJ , HoefslootHCJ, BoelensHFM, van der Greef J, Smilde AK: Analysis of longitudinal metabolomics data. Bioinformatics20(15) , 2438–2446 (2004).
  • Holmes E , AnttiH: Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterizing and interpreting complex biological NMR spectra.Analyst127 , 1549–1557 (2002).
  • Holmes E , NichollsAW, LindonJC et al.: Chemometric models for toxicity classification based on nmr spectra of biofluids. Chem. Res. Toxicol.13 , 471–478 (2000).
  • Kramer R : Chemometric techniques for quantitative analysis. Marcel Dekker Inc., NY, USA (1998).
  • Wold H : Nonlinear iterative partial least squares (NIPALS) modeling – some current developments. In:Multivariate Analysis. Krishnajah PR (Ed.), Academic Press, NY, USA (1973).
  • Martens H , NaesT: Multivariate Calibration. John Wiley & Sons Inc., NY, USA (1989).
  • Martens H , MartensH: Multivariate Analysis of Quality - An Introduction. John Wiley & Sons Inc., NY, USA(2000).
  • Esbensen KH : Multivariate Data Analysis – In Practice, Fifth Editon. Camo Process AS, Norway (2001).
  • Brindle JT , AnttiH, HolmesE et al.: Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med.8 , 1439–1444 (2002).
  • Gavaghan CL , WilsonID, NicholsonJK: Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA.FEBS Letters,530 , 191–196 (2002).
  • Eriksson L , AnttiH, GottfiesJ et al.: Using chemometrics for navigating in the large data sets of genomics, proteomics and metabonomics (gpm). Anal. Bioanal. Chem.380 , 419–429 (2004).
  • Keun HC , EbbelsTMC, AnttiH et al.: Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal. Chim. Acta490 , 265–276 (2003).
  • Antti H , EbelsTMD, KeunHC et al.: Statistical experimental design and partial least squares regression analysis of biofluid metabonomic NMR and clinical chemistry data for screening of adverse drug effects. Chemometr. Intell. Lab.73 , 139–149 (2004).
  • Antti H , BollardME, EbbelsT, KeunH et al.: Batch statistical processing of 1H NMR-derived urinary spectral data. J. Chemom.16 , 461–468 (2002).
  • Cloarec O , DumasME, TryggJ et al.: Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomics studies. Anal. Chem.77(2) , 517–526 (2005).
  • Cloarec O , DumasME, CraigA et al.: Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem.77(5) 1282–1289 (2005).
  • Williams ID , NicholsonJK, CastropJ et al.: High resolution liquid chromatography coupled to a TOF mass spectrometry as a tool for differntial metabolic pathway profiling in functional genomic studies. J. Proteome Res.4(2) , 591–598 (2005).
  • Wang C , KongH, GuanY et al.: Plasma Phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on electrospray mass spectrometry and multivariate statistical analysis Anal. Chem.77(13) , 4108–4116 (2005).
  • Williams RE , LenzEM, RantalainenM Wilson I: The comparative metabonomics of age-related changes in the urinary composition of male Wistar-derived and Zucker (fa/fa) obese rats. Mol. Biosyst.2 , 193–202 (2006).
  • Lenz EM , BrightJ, KnightR, WilsonID, MajorH: Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics.J. Pharm. Biomed. Anal.35 , 599–608 (2004).
  • Anthony ML , RoseVS, NicholsonJK Lindon JC: Classification of toxin-induced changes in 1H NMR spectra of urine using an artificial neural network. J. Pharmaceut. Biomed. Anal.13 , 205–211 (1995).
  • Holmes E , NicholsonJK, TranterG: Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks.Chem. Res. Tox.14 , 182–191 (2001).
  • Ebbels T , KeunH, BeckonertO et al.: Toxicity classification from metabonomic data using a density superposition approach: ‘Clouds‘. Anal. Chim. Acta490 , 109–122 (2003).
  • Beckonert O , BollardME, EbbelsTMD et al.: NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches. Anal. Chim. Acta490 , 3–15 (2003).
  • Eads , CD, Furnish CM, Noda I, Juhlin KD, Cooper DA, Morrall SW: Molecular Factor Analysis Applied to Collections of NMR Spectra. Anal. Chem.76(7) , 1982–1990 (2004).
  • Provencher SW : Automatic quantitation of localized in vivo1H spectra with LCModel.NMR Biomed.14 , 260–264 (2001).
  • Crockford DJ , KeunHC, SmithLM, HolmesE, NicholsonJK: Curve-fitting method for direct quantitation of compounds in complex biological mixtures using 1H NMR: application in metabonomic toxicology studies.Anal. Chem.77(14) , 4556–4562 (2005).
  • Ogborn MR , SareenS, PrychitkoJ, BuistR, PeelingJ: Altered organic anion and osmolyte content and excretion in rat polycystic kidney disease: an NMR study.Am. J. Physiol.272(1–2) , F63–F69 (1997).
  • Dieterle F , SchlotterbeckG, RossA, NiederhauserU, SennH: Application of metabonomics in a compound ranking study in early drug development revealing drug-induced application of metabonomics in a compound ranking study in early.Chem. Res. Toxicol.19 , 1175–1181 (2006).
  • Hewer R , VorsterJ, SteffensFE, MeyerD: Applying biofluid 1H NMR-based metabonomic techniques to distinguish between HIV-1 positive/AIDS patients on antiretroviral treatment and HIV-1 negative individuals.J. Pharm. Biomed. Anal.41 , 1442–1446 (2006).
  • Dumas ME , CanletC, VercaterenJ, Andre F, Paris A: Homeostatic signature of anabolic steroids in cattle using 1H-13C HMBC NMR metabonomics. J. Prot. Res.4 , 1493–1502 (2005).
  • Holland NT , SmithMT, EskenaziB, Bastaki M: Challenges of biological sample collection and processing for large epidemiological projects. Mutat. Res.543 , 217–234 (2003).
  • Deprez S , SweatmanBC, ConnorSC, HaseldenJN, WaterfieldJC: Optimisation of collection, storage and preparation of rat plasma for 1H NMR spectroscopic analysis in toxicology studies to determine inherent variation in biochemical profiles.J. Pharm. Biomed. Anal.30 , 1297–1310 (2002).
  • COMET Consortium internal presentation, O Beckonert. COMET Steering Committee Meeting, Brussels, Belgium, 27–28 June, 2002: A new format for study reports (2002).
  • Ciba-Geigy AG (Ed.): Wissenschaftliche Tabellen Geigy , Volume 1, 8th Edition. Ciba-Geigy, Basel, Switzerland (1980).
  • Ross A , SchlotterbeckG, DieterleF, Senn H:NMR spectroscopy in metabolic profiling. In: The Handbook of Metabonomics and Metabolomics. Chapter 3. Lindon JC, Nicholson JK, Holmes E (Eds.), Elsevier, Amsterdam (2006).
  • Vaz FM , MeleghB, BeneJ et al.: Analysis of carnitine biosynthesis metabolites in urine by HPLC–electrospray tandem mass spectrometry. Clin. Chem.48 , 826–834 (2002).
  • Vernez L , HopfgartnerG, WenkM, KrähenbühlS: Determination of carnitine and acylcarnitines in urine by high-performance liquid chromatography-electrospray ionization ion trap tandem mass spectrometry.J. Chromatogr. A984 , 203−213 (2003).
  • Zongmin D , RuifuY, ZhaobiaoG, YajunS, JinW: Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.Anal. Chem.74 , 5487−5491 (2002).
  • Want EJ , O‘MailleG, SmithCA et al.: Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem.78 , 743–752 (2006).
  • Drake SK , BowenRAR, RemaleyAT, HortinGL: Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides.Clin. Chem.50 , 2398–2401 (2004).
  • Hsieh SY , ChenRK, PanYH, LeeHL: Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling.Proteomics6 , 3189–3198 (2006).
  • Daykin CA , FoxallPJD, ConnorSC, LindonJC, NicholsonJK: The comparison of plasma deproteinization methods for the detection of low-molecular weight metabolites by 1H nuclear magnetic resonance spectroscopy.Anal. Biochem.304 , 220–230 (2002).
  • Swanson MG , ZektzerAS, TabatabaiZL et al.: Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med.55 , 1257–1264 (2006).
  • Martinez-Granados B , MonleonD, Martinez-BisbalMC et al.: Metabolite identification in human liver needle biopsies by high-resolution magic angle spinning 1H NMR spectroscopy. NMR Biomed.19 , 90–100 (2006).
  • Duarte IF , StanleyEG, HolmesE et al.: Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Anal. Chem.77 , 5570–5578 (2005).
  • Sitter B , LundgrenS, BathenTF, Halgunset J, Fjosne HE, Gribbestad IS: Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed.19 , 30–40 (2006).
  • Damyanovich AZ , StaplesJR, MarshallKW: 1H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation.Osteoarthr. Cartil.7 , 165–172 (1999).
  • Grootveld M , SilwoodCJL: 1H NMR analysis as a diagnostic probe for human saliva.Biochem. Biophys. Res. Commun.329 , 1–5 (2005).
  • Khandelwal P , BeyerCE, LinQ, Schechter LE, Bach AC: Studying rat brain neurochemistry using nanoprobe NMR spectroscopy: a metabonomics approach. Anal. Chem.,76 , 4123–4127 (2004).
  • Sanisns SM , NicholsonJK, ElcombeC, TimbrellJA: Hepatoxin-induced hypertaurinuria: a proton NMR study.Arch. Toxicol.64 , 407–411 (1990).
  • Nicholson JK , HighhamDP, TimbrellJA, SadlerPJ: Quantitative high-resolution NMR urinalysis studies on the biochemical effects of cadmium in the rat.Mol. Pharmacol.36 , 398–404 (1989).
  • Robertson DG , ReilyMD, LindonJNC, HolmesE, NicholsonJK: Metabonomic technology as a tool for rapid throughput in vivo toxicity screening.Compr. Toxicol.14 , 583–610 (2002).
  • Williams RE , MajorH, LockEA, LenzEM, WilsonID: d-serine induced nephrotoxicity – a metabonomics approach.Toxicology207(2) , 179–190 (2005).
  • Keun HC : Metabonomic modeling of drug toxicity.Pharmacol. Ther.109 , 92–106 (2006).
  • Lindon JC , HolmesE, NicholsonJK: Toxicological applications of magnetic resonance.Prog. Nucl. Magn. Reson. Spectrosc.45(1–2) , 109–143 (2004).
  • Lindon JC , HolmesE, BollardME, Stanley EG, Nicholson JK: Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers9 , 1–31 (2004).
  • Fung M , ThorntonA, MybeckK, WuJH, HornbuckleK, MunizE: Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets – 1960 to 1999.Drug Inform. J.35 , 293–317 (2001).
  • Lindon JC , KeunHC, EbbelsTM, Pearce JM, Holmes E, Nicholson JK: The consortium for metabonomic toxicology (COMET): aims, activities and achievments. Pharmacogenomics6(7) , 691–699 (2005).
  • Lindon JC , NicholsonJK, HolmesE et al.: Contemporary issues in toxicology: the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl. Pharmacol.187(3) , 137–146 (2003).
  • Reasor , MJ, Ogle CL, Walker ER, Kacew S: Amiadorone-induced phosholipidosis in rat alveolar macrophages. Am. Rev. Respir. Dis.137 , 510–518 (1998).
  • Kodavanti UP , MehendaleHM: Cationic ambiphilic drugs and phospholipid storage disorders.Pharmacol. Rev.42 , 327–354 (1990).
  • Lullmann H , Lullmann-RauchR, WassermannO: Drug induced phospholipidosis.Crit. Rev. Toxicol.2 , 185–218 (1975)
  • Kodovanti UP , LockhardVG, Mehendale HM: In vivo toxicity and pulmonary effects of promazine and chlorpromazine in rats. J. Biochem. Toxicol.5 , 245–251 (1990).
  • Espina , JR, Shockcor, J, Herron, W et al.: Detection of in vivo biomarkers of phospholipidosis using NMR-based metabonomic approaches. Magn. Reson. Chem.39 , 559–565 (2001).
  • Lindon JC , NicholsonJK, EverettJR: NMR spectroscopy of biofluids. In:Ann Reports NMR Spectr. Webb GA (Ed.), Academic Press, Oxford, UK, 38 , 1–88 (1999).
  • Chace DH , MillingtonDS, TeradaN, KahlerSG, RoeCR, HofmanLF: Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry.Clin. Chem.39 , 66–71 (1993).
  • Garg U , DasoukiM: Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects.Clin. Biochem.39 , 315–32 (2006).
  • Fingerhut R , RöschingerW, MuntauAC et al.: Hepatic carnitine palmitoyltransferase 1 deficiency: acylcarnitine profiles in blood spots are highly specific. Clin. Chem.47 , 1763–1768 (2001).
  • Pollitt RJ : International perspectives on newborn screening.J. Inherit. Metab. Dis.29 , 390–396 (2006).
  • Bathen TF , KraneJ, EnganT, BjerveKS, AxelsonD: Quantification of plasma lipids and apolipoproteins by use of proton NMR spectroscopy, multivariate and neural network analysis.NMR Biomed.13 , 271–288 (2000).
  • Tsai MY , GeorgopoulosA, OtvosJD et al.: Comparison of ultracentrifugation and nuclear magnetic resonance spectroscopy in the quantification of triglyceride rich lipoproteins after an oral fat load. Clin. Chem.50 , 1201–1204 (2004).
  • Freedman DS , OtvosJD, JeyarajahEJ et al.: Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham study. Clin. Chem.50 , 1189–1200 (2004).
  • Ala-Korpela M , KorhonenA, KeisalaJ et al.: 1H NMR-based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J. Lip. Res.35 , 2292–2304 (1994).
  • Soedamah-Muthu SS , ChangYF, OtvosJ, EvansRW, OrchardTJ: Lipoprotein subclass measurements by nuclear magnetic resonance spectroscopy improve the prediction of coronary artery disease in Type 1 diabetes. A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study.Diabetologia46 , 674–682 (2003).
  • Kuller L , ArnoldA, TracyR et al.: Nuclear magnetic resonance spectroscopy of lipoproteins and risk of coronary heart disease in the cardiovascular health study. Arterioscler. Thromb. Vasc. Biol.22 , 1175–1180 (2002).
  • Russo GT , MeigsJB, CupplesLA et al.: Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels, lipoprotein subclass profiles and coronary heart disease risk: the Framingham offspring study. Atherosclerosis158 , 173–181 (2001).
  • Kochar S , JacobsDM, RamadanZ, Berruex F, Fuerholz A, Fay LB: Probing gender-specific metabolism differences in humans by NMR-based metabonomics. Anal. Biochem.352 , 274–281 (2006).
  • Subramanian A , GuptaA, SaxenaS et al.: Proton MR CSF analysis and new software as predictors for the differentiation of meningitis in children. NMR Biomed.18 , 213–225 (2005).

Websites

  • Lefebvre B , GolotvinS, SchoenbachlerL et al.: Intelligent Bucketing For Metabonomics – Part 1. www.acdlabs.com/download/publ/2004/enc04/intelbucket.pdf.
  • Lefebvre B , SasakiR, GolotvinS, NichollsA: Intelligent bucketing for metabonomics – Part 2. www.acdlabs.com/download/publ/2004/intelbucket2.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.