924
Views
0
CrossRef citations to date
0
Altmetric
Review

Therapeutic Targets and Biomarkers Identified in Cancer Choline Phospholipid Metabolism

&
Pages 1109-1123 | Published online: 20 Oct 2006

Bibliography

  • Podo F : Tumour phospholipid metabolism.NMR Biomed.12(7) , 413–439 (1999).
  • Ackerstaff E , GlundeK, BhujwallaZM: Choline phospholipid metabolism: a target in cancer cells?J. Cell Biochem.90(3) , 525–533 (2003).
  • Gillies RJ , BhujwallaZM, EvelhochJ et al.: Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia2(1–2) , 139–151 (2000).
  • Evelhoch JL , GilliesRJ, KarczmarGS et al.: Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia2(1–2) , 152–165 (2000).
  • Griffin JL , ShockcorJP: Metabolic profiles of cancer cells.Nat. Rev. Cancer4(7) , 551–561 (2004).
  • Negendank W : Studies of human tumors by MRS: a review.NMR Biomed.5(5) , 303–324 (1992).
  • Ronen SM , LeachMO: Imaging biochemistry: applications to breast cancer.Breast Cancer Res.3(1) , 36–40 (2001).
  • Franks SE , SmithMR, Arias-MendozaF et al.: Phosphomonoester concentrations differ between chronic lymphocytic leukemia cells and normal human lymphocytes. Leuk. Res.26(10) , 919–926 (2002).
  • Aboagye EO , BhujwallaZM: Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells.Cancer Res.59(1) , 80–84 (1999).
  • Iorio E , MezzanzanicaD, AlbertiP et al.: Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res.65(20) , 9369–9376 (2005).
  • Jacobs MA , BarkerPB, BottomleyPA, BhujwallaZ, BluemkeDB: Proton MR spectroscoptic imaging of human breast cancer:a preliminary study.J. Magn. Reson. Imaging19(1) , 68–75 (2004).
  • Arias-Mendoza F , PayneGS, ZakianKL et al.: In vivo31P MR spectral patterns and reproducibility in cancer patients studied in a multi-institutional trial. NMR Biomed.19(4) , 504–512 (2006).
  • Albers MJ , KriegerMD, Gonzalez-GomezI et al.: Proton-decoupled 31P MRS in untreated pediatric brain tumors. Magn. Reson. Med.53(1) , 22–29 (2005).
  • Barker PB , GlicksonJD, BryanRN: In vivo magnetic resonance spectroscopy of human brain tumors.Top. Magn. Reson. Imaging.5(1) , 32–45 (1993).
  • Pouwels PJW , FrahmJ: Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS.Magn. Reson. Med.39(1) , 53–60 (1998).
  • Ross B , MichaelisT: Clinical applications of magnetic resonance spectroscopy.Magn. Reson. Q.10(4) , 191–247 (1994).
  • Chang L , McBrideD, MillerBL et al.: Localized in vivo1H magnetic resonance spectroscopy and in vitro analyses of heterogeneous brain tumors. J. Neuroimaging5(3) , 157–163 (1995).
  • Tzika AA , ChengLL, GoumnerovaL et al.: Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J. Neurosurg.96(6) , 1023–1031 (2002).
  • Nelson SJ : Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors.Magn. Reson. Med.46(2) , 228–239 (2001).
  • Howe FA , BartonSJ, CudlipSA et al.: Metabolic profiles of human brain tumors using quantitative in vivo1H magnetic resonance spectroscopy. Magn. Reson. Med.49(2) , 223–232 (2003).
  • Murphy M , LoosemoreA, CliftonAG et al.: The contribution of proton magnetic resonance spectroscopy (1H MRS) to clinical brain tumour diagnosis. Br. J. Neurosurg.16(4) , 329–334 (2002).
  • Lindskog M , SpengerC, KlasonT et al.: Proton magnetic resonance spectroscopy in neuroblastoma: current status, prospects and limitations. Cancer Lett.228(1–2) , 247–255 (2005).
  • Jenkinson MD , SmithTS, JoyceK et al.: MRS of oligodendroglial tumors: correlation with histopathology and genetic subtypes. Neurology64(12) , 2085–2089 (2005).
  • Jeun SS , KimMC, KimBS et al.: Assessment of malignancy in gliomas by 3T 1H MR spectroscopy. Clin. Imaging29(1) , 10–15 (2005).
  • McKnight TR : Proton magnetic resonance spectroscopic evaluation of brain tumor metabolism.Semin. Oncol.31(5) , 605–617 (2004).
  • Narayan P , KurhanewiczJ: Magnetic resonance spectroscopy in prostate disease: diagnostic possibilities and future developments.Prostate Suppl.4 , 43–50 (1992).
  • Schick F , BongersH, KurzS et al.: Localized proton MR spectroscopy of citrate in vitro and of the human prostate in vivo at 1.5 T. Magn. Reson. Med.29(1) , 38–43 (1993).
  • Kurhanewicz J , VigneronDB, HricakH et al.: Three-dimensional 1H MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology198(3) , 795–805 (1996).
  • Menard C , SmithIC, SomorjaiRL et al.: Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy: a histopathologic study of diagnostic validity. Int. J. Radiat. Oncol. Biol. Phys.50(2) , 317–323 (2001).
  • Jagannathan NR , SinghM, GovindarajuV et al.: Volume localized in vivo proton MR spectroscopy of breast carcinoma: variation of water-fat ratio in patients receiving chemotherapy. NMR Biomed.11(8) , 414–422 (1998).
  • Roebuck JR , CecilKM, SchnallMD, LenkinskiRE: Human breast lesions: Characterization with proton MR spectroscopy.Radiology209(1) , 269–275 (1998).
  • Yeung DK , CheungHS, TseGM: Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy – initial results.Radiology220(1) , 40–46 (2001).
  • Bolan PJ , MeisamyS, BakerEH et al.: In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn. Reson. Med.50(6) , 1134–1143 (2003).
  • Meisamy S , BolanPJ, BakerEH et al.: Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology236(2) , 465–475 (2005).
  • Stanwell P , GluchL, ClarkD et al.: Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur. Radiol.15(5) , 1037–1043 (2005).
  • Baik HM , SuMY, YuH, NalciogluO, MehtaR: Quantification of choline-containing compounds in malignant breast tumors by (1)H MR spectroscopy using water as an internal reference at 1.5 T.Magma19(2) , 96–104 (2006).
  • Lehnhardt FG , BockC, RohnG, Ernestus RI, Hoehn M: Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation. NMR Biomed.18(6) , 371–382 (2005).
  • Mountford CE , SomorjaiRL, MalychaP et al.: Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classification strategy. Br. J. Surg.88(9) , 1234–1240 (2001).
  • Swanson MG , VigneronDB, TabatabaiZL et al.: Proton HR-MAS spectroscopy and quantitative pathologic analysis of M RI/3D-MRSI-targeted postsurgical prostate tissues. Magn. Reson. Med.50(5) , 944–954 (2003).
  • Millis K , WeybrightP, CampbellN et al.: Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy. Magn. Reson. Med.41(2) , 257–267 (1999).
  • Zakian KL , Shukla-DaveA, MeyersP et al.: Identification of prognostic markers in bone sarcomas using proton-decoupled phosphorus magnetic resonance spectroscopy. Cancer Res.63(24) , 9042–9047 (2003).
  • Nelson SJ , GravesE, PirzkallA et al.:In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J. Magn. Reson. Imaging16(4) , 464–476 (2002).
  • Zaider M , ZelefskyMJ, LeeEK et al.: Treatment planning for prostate implants using magnetic-resonance spectroscopy imaging. Int. J. Radiat. Oncol. Biol. Phys.47(4) , 1085–1096 (2000).
  • Law M , ChaS, KnoppEA et al.: High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology222(3) , 715–721 (2002).
  • Meisamy S , BolanPJ, BakerEH et al.: Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo1H MR spectroscopy – a pilot study at 4 T. Radiology233(2) , 424–431 (2004).
  • Manton DJ , ChaturvediA, HubbardA et al.: Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy. Br. J. Cancer94(3) , 427–435 (2006).
  • Kurhanewicz J , VigneronDB, NelsonSJ: Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer.Neoplasia2(1–2) , 166–189 (2000).
  • Mueller-Lisse UG , SwansonMG, Vigneron DB et al.: Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn. Reson. Med.46(1) , 49–57 (2001).
  • Kurhanewicz J , VigneronDB, HricakH et al.: Prostate cancer: metabolic response to cryosurgery as detected with 3D 1H MR spectroscopic imaging. Radiology200(2) , 489–496 (1996).
  • Ramirez de Molina A , Rodriguez-Gonzalez A, Gutierrez R et al.: Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun.296(3) , 580–583 (2002).
  • Ramirez de Molina A , GutierrezR, Ramos MA et al.: Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene21(27) , 4317–4322 (2002).
  • Nakagami K , UchidaT, OhwadaS, KoibuchiY, MorishitaY: Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.Jpn. J. Cancer Res.90(11) , 1212–1217 (1999).
  • Nakagami K , UchidaT, OhwadaS et al.: Increased choline kinase activity and elevated phosphocholine levels in human colon cancer. Jpn. J. Cancer Res.90(4) , 419–424 (1999).
  • Glunde K , JieC, BhujwallaZM: Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.Cancer Res.64(12) , 4270–4276 (2004).
  • Glunde K , RamanV, MoriN, Bhujwalla ZM:RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res.65(23) , 11034–11043 (2005).
  • Ramirez de Molina A , Rodriguez-Gonzalez A, Penalva V, Lucas L, Lacal JC: Inhibition of ChoK is an efficient antitumor strategy for Harvey-, Kirsten-, and N-ras-transformed cells. Biochem. Biophys. Res. Commun.285(4) , 873–879 (2001).
  • Ramirez de Molina A , PenalvaV, LucasL, LacalJC: Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K.Oncogene21(6) , 937–946 (2002).
  • Ferretti A , PodoF, CarpinelliG et al.: Detection of neutral active phosphatidylcholine-specific phospholipase C in Friend leukemia cells before and after erythroid differentiation. Anticancer Res.13(6A) , 2309–2317 (1993).
  • Podo F , FerrettiA, KnijnA et al.: Detection of phosphatidylcholine-specific phospholipase C in NIH-3T3 fibroblasts and their H-ras transformants: NMR and immunochemical studies. Anticancer Res.16(3B) , 1399–1412 (1996).
  • Wu X , LuH, ZhouL, HuangY, ChenH: Changes of phosphatidylcholine-specific phospholipase C in hepatocarcinogenesis and in the proliferation and differentiation of rat liver cancer cells.Cell Biol. Int.21(6) , 375–381 (1997).
  • Ramoni C , SpadaroF, BarlettaB, Dupuis ML, Podo F: Phosphatidylcholine-specific phospholipase C in mitogen-stimulated fibroblasts. Exp. Cell Res.299(2) , 370–382 (2004).
  • Momchilova A , MarkovskaT, PankovR: Ha-ras-transformation alters the metabolism of phosphatidylethanolamine and phosphatidylcholine in NIH 3T3 fibroblasts.Cell Biol. Int.23(9) , 603–610 (1999).
  • Teegarden D , TaparowskyEJ, KentC: Altered phosphatidylcholine metabolism in C3H10T1/2 cells transfected with the Harvey-ras oncogene.J. Biol. Chem.265(11) , 6042–6047 (1990).
  • Cuadrado A , CarneroA, DolfiF, JimenezB, LacalJC: Phosphorylcholine: a novel second messenger essential for mitogenic activity of growth factors.Oncogene8(11) , 2959–2968 (1993).
  • Chung T , HuangJS, MukherjeeJJ, Crilly KS, Kiss Z: Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I. Cell Signal12(5) , 279–288 (2000).
  • Katz-Brull R , DeganiH: Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method.Anticancer Res.16(3B) , 1375–1380 (1996).
  • Katz-Brull R , SegerD, Rivenson-SegalD, RushkinE, DeganiH: Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis.Cancer Res.62(7) , 1966–1970 (2002).
  • Foster DA , XuL: Phospholipase D in cell proliferation and cancer.Mol. Cancer Res.1(11) , 789–800 (2003).
  • del Peso L , LucasL, EsteveP, LacalJC: Activation of phospholipase D by growth factors and oncogenes in murine fibroblasts follow alternative but cross-talking pathways.Biochem. J.322(Pt 2) , 519–528 (1997).
  • Balsinde J , WinsteadMV, DennisEA: Phospholipase A(2) regulation of arachidonic acid mobilization.FEBS Lett.531(1) , 2–6 (2002).
  • Laye JP , GillJH: Phospholipase A2 expression in tumours: a target for therapeutic intervention?Drug Discov. Today8(15) , 710–716 (2003).
  • Bhujwalla ZM , AboagyeEO, GilliesRJ et al.: Nm23-transfected MDA-MB-435 human breast carcinoma cells form tumors with altered phospholipid metabolism and pH: a 31P nuclear magnetic resonance study in vivo and in vitro. Magn. Reson. Med.41(5) , 897–903 (1999).
  • Ronen SM , JacksonLE, BelouecheM, LeachMO: Magnetic resonance detects changes in phosphocholine associated with Ras activation and inhibition in NIH 3T3 cells.Br. J. Cancer84(5) , 691–696 (2001).
  • Ratnam S , KentC: Early increase in choline kinase activity upon induction of the H-ras oncogene in mouse fibroblast cell lines.Arch. Biochem. Biophys.323(2) , 313–322 (1995).
  • Lucas L , PenalvaV, Ramirez de Molina A, Del Peso L, Lacal JC: Modulation of phospholipase D by Ras proteins mediated by its effectors Ral-GDS, PI3K and Raf-1. Int. J. Oncol.21(3) , 477–485 (2002).
  • Hernandez-Alcoceba R , SanigerL, Campos J et al.: Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene15(19) , 2289–2301 (1997).
  • Rodriguez-Gonzalez A , de Molina AR, Fernandez F et al.: Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells. Oncogene22(55) , 8803–8812 (2003).
  • Hernandez-Alcoceba R , FernandezF, Lacal JC: In vivo antitumor activity of choline kinase inhibitors: a novel target for anticancer drug discovery. Cancer Res.59(13) , 3112–3118 (1999).
  • Al-Saffar NM , TroyH, Ramirez de Molina A et al.: Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res.66(1) , 427–434 (2006).
  • Lacal JC : Choline kinase: a novel target for antitumor drugs.IDrugs4(4) , 419–426 (2001).
  • Rodriguez-Gonzalez A , Ramirez de Molina A, Benitez-Rajal J, Lacal JC: Phospholipase D and choline kinase: their role in cancer development and their potential as drug targets. Prog. Cell Cycle Res,.5 , 191–201 (2003).
  • Steed PM , ChowAH: Intracellular signaling by phospholipase D as a therapeutic target.Curr. Pharm. Biotechnol.2(3) , 241–256 (2001).
  • Pai JK , FrankEA, BloodC, ChuM: Novel ketoepoxides block phospholipase D activation and tumor cell invasion.Anticancer Drug Des.9(4) , 363–372 (1994).
  • Workman P , AboagyeEO, ChungYL et al.: Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J. Natl Cancer Inst.98(9) , 580–598 (2006).
  • Weybright P , SundgrenPC, MalyP et al.: Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am. J. Roentgenol.185(6) , 1471–1476 (2005).
  • Balmaceda C , CritchellD, MaoX et al.: Multisection 1H magnetic resonance spectroscopic imaging assessment of glioma response to chemotherapy. J. Neurooncol.76(2) , 185–191 (2006).
  • Murphy PS , ViviersL, AbsonC et al.: Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br. J. Cancer90(4) , 781–786 (2004).
  • Jagannathan NR , KumarM, SeenuV et al.: Evaluation of total choline from in vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br. J. Cancer84(8) , 1016–1022 (2001).
  • Leach MO , VerrillM, GlaholmJ et al.: Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed.11(7) , 314–340 (1998).
  • Pucar D , Shukla-DaveA, HricakH et al.: Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology236(2) , 545–553 (2005).
  • Coakley FV , TehHS, QayyumA et al.: Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology233(2) , 441–448 (2004).
  • Griffiths JR , TateAR, HoweFA, StubbsM: Magnetic resonance spectroscopy of cancer-practicalities of multi-centre trials and early results in non-Hodgkin’s lymphoma.Eur. J. Cancer38(16) , 2085–2093 (2002).
  • Schwarz AJ , MaiseyNR, CollinsDJ et al.: Early in vivo detection of metabolic response: a pilot study of 1H MR spectroscopy in extracranial lymphoma and germ cell tumours. Br. J. Radiol.75(900) , 959–966 (2002).
  • Griffin JL , LehtimakiKK, ValonenPK et al.: Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Res.63(12) , 3195–3201 (2003).
  • Valonen PK , GriffinJL, LehtimakiKK et al.: High-resolution magic-angle-spinning 1H NMR spectroscopy reveals different responses in choline-containing metabolites upon gene therapy-induced programmed cell death in rat brain glioma. NMR Biomed.18(4) , 252–259 (2005).
  • McPhail LD , ChungYL, MadhuB et al.: Tumor dose response to the vascular disrupting agent, 5,6-dimethylxanthenone-4-acetic acid, using in vivo magnetic resonance spectroscopy. Clin. Cancer Res.11(10) , 3705–3713 (2005).
  • Morvan D , DemidemA, PaponJ, De LatourM, MadelmontJC: Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples.Cancer Res.62(6) , 1890–1897 (2002).
  • Dyke JP , ZakianKL, SpeesWM et al.: Metabolic response of the CWR22 prostate tumor xenograft after 20 Gy of radiation studied by 1H spectroscopic imaging. Clin. Cancer Res.9(12) , 4529–4536 (2003).
  • Natarajan K , MoriN, ArtemovD, BhujwallaZM: Exposure of human breast cancer cells to the anti-inflammatory agent indomethacin alters choline phospholipid metabolites and Nm23 expression.Neoplasia4(5) , 409–416 (2002).
  • Milkevitch M , ShimH, PilatusU et al.: Increases in NMR-visible lipid and glycerophosphocholine during phenylbutyrate-induced apoptosis in human prostate cancer cells. Biochim. Biophys. Acta1734(1) , 1–12 (2005).
  • Beloueche-Babari M , JacksonLE, Al-Saffar NM et al.: Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol. Cancer Ther.5(1) , 187–196 (2006).
  • Beloueche-Babari M , JacksonLE, Al-Saffar NM et al.: Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition. Cancer Res.65(8) , 3356–3363 (2005).
  • Chung YL , TroyH, BanerjiU et al.: Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models. J. Natl Cancer Inst.95(21) , 1624–1633 (2003).
  • Cooper WA , BartierWA, RideoutDC, DelikatnyEJ: 1H NMR visible lipids are induced by phosphonium salts and 5-fluorouracil in human breast cancer cells.Magn. Reson. Med.45(6) , 1001–1010 (2001).
  • Glunde K , AckerstaffE, NatarajanK, ArtemovD, BhujwallaZM: Real-time changes in 1H and 31P NMR spectra of malignant human mammary epithelial cells during treatment with the anti-inflammatory agent indomethacin.Magn. Reson. Med.48(5) , 819–825 (2002).
  • Sterin M , CohenJS, MardorY, BermanE, RingelI: Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study.Cancer Res.61(20) , 7536–7543 (2001).
  • Adebodun F : Phospholipid metabolism and resistance to glucocorticoid-induced apoptosis in a human leukemic cell line: a 31P-NMR study using a phosphonium analog of choline.Cancer Lett.140(1–2) , 189–194 (1999).
  • Viola A , LutzNW, MarocC et al.: Metabolic effects of photodynamically induced apoptosis in an erythroleukemic cell line. A 31P NMR spectroscopic study of Victoria-Blue-BO-sensitized TF-1 cells. Int. J. Cancer85(5) , 733–739 (2000).
  • Kuliszkiewicz-Janus M , BaczynskiS, Jurczyk A: Bone marrow transplantation in the course of hematological malignancies – follow-up study in blood serum by 31P MRS. Med. Sci. Monit.10(8) , CR485–492 (2004).
  • Gottschalk S , AndersonN, HainzC, EckhardtSG, SerkovaNJ: Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells.Clin. Cancer Res.10(19) , 6661–6668 (2004).
  • Serkova N , BorosLG: Detection of resistance to imatinib by metabolic profiling: clinical and drug development implications.Am. J. Pharmacogenomics5(5) , 293–302 (2005).
  • Yoshimoto M , WakiA, ObataA et al.: Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl. Med. Biol.31(7) , 859–865 (2004).
  • de Molina AR , Banez-CoronelM, Gutierrez R et al.: Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res.64(18) , 6732–6739 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.