273
Views
0
CrossRef citations to date
0
Altmetric
Review

Pattern-Recognition Techniques with Haplotype Analysis in Pharmacogenomics

, , &
Pages 75-83 | Published online: 22 Dec 2006

Bibliography

  • Kwok PY , GuZ: Single nucleotide polymorphism libraries: why and how are we building them?Mol. Med. Today5, 538–543 (1999).
  • Johnson GC , EspositoL, BarrattBJ et al.: Haplotype tagging for the identification of common disease genes.Nat. Genet.29, 233–237 (2001).
  • Deloukas P , BentleyD: The HapMap project and its application to genetic studies of drug response.Pharmacogenomics J.4, 88–90 (2004).
  • Roses AD : Genome-based pharmacogenetics and the pharmaceutical industry.Nat. Rev. Drug Discov.1, 541–549 (2002).
  • The International HapMap Consortium: The International HapMap Project. Nature426, 789–794 (2003).
  • The International HapMap Consortium: The haplotype map of the human genome. Nature437, 1299–1320 (2005).
  • Hwang Y , SuC, ChenDS, ChenPJ: Prospect of individualized medicine in chronic hepatitis C therapy by pharmacogenomics.Current Pharmacogenomics4(2), 157–167 (2006).
  • Chen, X , SullivanPF: Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput.Pharmacogenomics J.3, 77–96 (2003).
  • Gabriel SB , SchaffnerSF, NguyenH et al.: The structure of haplotype blocks in the human genome.Science296, 2225–2229 (2002).
  • Hinds DA , StuveLL, NilsenG.B et al.: Whole-genome patterns of common DNA variation in three human populations. Science307, 1072–1079 (2005).
  • Bell JT , WallaceC, DobsonR et al.: Two-dimensional genome-scan identifies novel epistatic loci for essential hypertension. Hum. Mol. Genet.15, 1365–1374 (2006).
  • Carlborg O , HaleyCS: Epistasis: too often neglected in complex trait studies.Nature5, 618–625 (2004).
  • Crawford DC , NickersonDA: Definition and clinical importance of haplotypes.Annu. Rev. Med.56, 303–320 (2005).
  • Clark AG : Inference of haplotype from PCR-amplified samples of diploid populations.Mol. Biol. Evol.7(2), 111–122 (1990).
  • Excoffier L , SlatkinM: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population.Mol. Biol. Evol.12, 921–927 (1995).
  • Stephens M , SmithNJ, DonnellyP: A new statistical method for haplotype reconstruction from population data.Am. J. Hum. Genet.68, 978–989 (2001).
  • Niu T , QinZS, XuX, LiuJS: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms.Am. J. Hum. Genet.70, 157–169 (2002).
  • Stephens M , DonnellyP: A comparison of Bayesian methods for haplotype reconstruction from population genotype data.Am. J. Hum. Genet.73, 1162–1169 (2003).
  • Scheet P , StephensM: A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase.Am. J. Hum. Genet.78(4), 629–44 (2006).
  • Ding K , ZhouK, ZhangJ, KnightJ, Zhang X, Shen Y: The effect of haplotype-block definitions on inference of haplotype-block structure and htSNPs selection. Mol. Biol. Evol.22(1), 148–159 (2005).
  • Wang N , AkeyJM, ZhangK, Chakraborty R, Jin L: Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am. J. Hum. Genet.71, 1227–1234 (2002).
  • Patil N , BernoAJ, HindsDA et al.: Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science294, 1719–1723 (2001).
  • Zhang K , DengM, ChenT, WatermanMS, SunFZ: A dynamic programming algorithm for haplotype block partitioning.Proc. Natl Acad. Sci. USA99, 7335–7339 (2002).
  • Schulze TG , ZhangK, ChenYS, AkulaN, SunF, McMahonFJ: Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome.Hum. Mol. Genet.13(3), 335–342 (2004).
  • Halperin E , EskinE: Haplotype Reconstruction from genotype data using imperfect phylogeny.Bioinformatics20(12), 1842–1849 (2004).
  • Barrett JC , FryB, MallerJ, DalyMJ: Haploview: analysis and visualization of LD and haplotype maps.Bioinformatics21, 263–265 (2005).
  • de B akker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D: Efficiency and power in genetic association studies. Nat. Genet.37(11), 1217–1223 (2005).
  • Stram DO , HaimanCA, HirschhornJN et al.: Choosing haplotype-tagging SNPs based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the multiethnic cohort study. Hum. Hered.55, 27–36 (2003).
  • Zhang J , RoweWL, StruewingJP, Buetow KH: HapScope: a software system for automated and visual analysis of functionally annotated haplotypes. Nucleic Acids Res.30(23), 5213–5221 (2002).
  • Carlson CS , EberleMA, RiederMJ, YiQ, KruglyakL, NickersonDA: Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium.Am. J. Hum. Genet.74(1), 106–120 (2004).
  • Howie BN , CarlsonCS, RiederMJ, NickersonDA: Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.Hum. Genet.120(1), 58–68 (2006).
  • Hwang Y , ChenEY, GuZJ et al.: Genetic predisposition of responsiveness to therapy for chronic hepatitis C.Pharmacogenomics7(5), 697–709 (2006).
  • Lin E , HwangY, TzengCM: A case study of the utility of the HapMap database for pharmacogenomic haplotype analysis in the Taiwanese population.Mol. Diagn. Ther.10(6) 367–370 (2006).
  • Lin M , WuR: Theoretical basis for the identification of allelic variants that encode drug efficacy and toxicity.Genetics170(2), 919–928 (2005).
  • Fallin D , CohenA, EssiouxL et al.: Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer' disease. Genome Res.11, 143–151 (2001).
  • Tzeng JY , WangCH, KaoJT, HsiaoCK: Regression-based association analysis with clustered haplotypes through use of genotypes.Am. J. Hum. Genet.78, 231–242 (2004).
  • Hirschhorn JN , DalyMI: Genome-wide association studies for common diseases and complex traits.Nat. Rev. Genet.6, 95–108 (2005).
  • Nyholt DR : A simple correction for multiple testing for single-nucleotide polymorphisms in Linkage Disequilibrium with each other.Am. J. Hum. Genet.74, 765–769 (2004).
  • Becker T , KnappM: Maximum-likelihood estimation of haplotype frequencies in nuclear families.Genet. Epidemiol.27, 21–32 (2004).
  • Epstein MP , SattenGA: Inference on haplotype effects in case-control studies using unphased genotype data.Am. J. Hum. Genet.73, 1316–1329 (2003).
  • Dudbridge F : Pedigree disequilibrium tests for multilocus haplotypes.Genet. Epidemiol.25, 115–221 (2003).
  • Sargent DJ : Comparison of artificial neural networks with other statistical approaches.Cancer91(8), 1636–42 (2001).
  • McCullagh P , NelderJA. Generalized Linear Models (2nd Edition). Chapman and Hall, London, UK (1989).
  • Yamanouchi Y , IwataN, SuzukiT, Kitajima T, Ikeda M, Ozaki N: Effect of DRD2, 5-HT2A, and COMT genes on antipsychotic response to risperidone. Pharmacogenomics J.3, 356–361 (2003).
  • Arranz MJ , MunroJ, BirkettJ et al.: Pharmacogenetic prediction of clozapine response.Lancet355(9215), 1615–1616 (2000).
  • Zheng B , AgrestiA: Summarizing the predictive power of a generalized linear model.Stat. Med.19, 1771–1781 (2000).
  • Kung SY , HwangJN: Neural networks for intelligent multimedia processing.Proc. IEEE Ins.t Electr. Electron. Eng.86, 1244–1272 (1998).
  • Lin E , HwangY, WangSC, GuZJ, Chen EY: An artificial neural network approach to the drug efficacy of interferon treatments. Pharmacogenomics7(7), 1017–1024 (2006).
  • Rumelhart DE , HintonGE, WilliamRJ: Learning internal representation by error propagation. In:Parallel Distributed Processing: Explorations in the Microstructures of Cognition (vol.1), Foundations. Rumelhart DE, McClelland JL (Eds). MIT Press, MA, USA (1986).
  • Serretti A , SmeraldE: Neural network analysis in pharmacogenetics of mood disorders.BMC Med. Genet.5, 27 (2004).
  • Bishop C : Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK (1995).
  • Eftekhar B , MohammadK, ArdebiliHE, GhodsiM, KetabchiE: Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data.BMC Med. Inform. Decis. Mak.5, 3 (2005).
  • North BV , CurtisD, CassellPG, Hitman GA, Sham PC: Assessing optimal neural network architecture for identifying disease-associated multi-marker genotypes using a permutation test, and application to calpain 10 polymorphisms associated with diabetes. Ann. Hum. Genet.67, 348–356 (2003).
  • Coffey CS , HebertPR, RitchieMD et al.: An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene–gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics5, 49 (2004).
  • Onay VU , BriollaisL, KnightJA et al.: SNP–SNP interactions in breast cancer susceptibility. BMC Cancer6, 114 (2006).
  • Breiman L , FriedmanJH, OlshenRA, Stone CJ: Classification and Regression Trees. Wadsworth, CA, USA (1984).
  • Friedman JH : Multivariate adaptive regression splines.The Annals of Statistics19, 1–67 (1991).
  • Huang J , LinA, NarasimhanB et al.: Tree-structured supervised learning and the genetics of hypertension. Proc. Natl Acad. Sci. USA101(29), 10529–10534 (2004).
  • Ruczinski I , KooperbergC, LeBlaneM: Logic regression.J. Comput. Graph. Stat.12, 475–511 (2003).
  • Kooperberg C , BisJC, MarcianteKD, HeckbertSR, LumleyT, PsatyBM: Logic regression for analysis of the association between genetic variation in the renin–angiotensin system and myocardial infarction or stroke.Am. J. Epidemiol. (2006).
  • Ma DQ , WhiteheadPL, MenoldMM, et al.: Identification of significant association and gene–gene interaction of GABA receptor subunit genes in autism. Am. J. Hum. Genet.77(3), 377–388 (2005).
  • Hahn LW , RitchieMD, MooreJH: Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions.Bioinformatics19, 376–382 (2003).
  • Cook NR , ZeeRY, RidkerPM: Tree and spline based association analysis of gene–gene interaction models for ischemic stroke.Stat. Med.23(9), 1439–1453 (2004).
  • Ritchie MD , MotsingerAA: Multifactor dimensionality reduction for detecting gene–gene and gene–environment interactions in pharmacogenomics studies.Pharmacogenomics6(8), 823–34 (2005).
  • Liang KH , HwangY, ShaoWC, ChenEY: An algorithm for model construction and its applications to pharmacogenomic studies.J. Hum. Genet.51, 751–759 (2006).
  • Tomita Y , TomidaS, HasegawaY et al.: Artificial neural network approach for selection of susceptible single nucleotide polymorphisms and construction of prediction model on childhood allergic asthma. BMC Bioinformatics5, 120 (2004).
  • Ritchie MD , WhiteBC, ParkerJS, Hahn LW, Moore JH: Optimization of neural network architecture using genetic programming improves detection and modeling of gene–gene interactions in studies of human diseases. BMC Bioinformatics4, 28 (2003).
  • Koza JR : Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, MA, USA (1992).
  • Hsieh CH , LiangKH, HungYR et al.: Analysis of epistasis for diabetic nephropathy among Type 2 diabetic patients. Hum. Mol. Genet.15, 2701–2708 (2006).
  • Marchini J , DonnellyP, CardonLR: Genome-wide strategies for detecting multiple loci that influence complex diseases.Nat. Genet.37, 413–417 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.