761
Views
0
CrossRef citations to date
0
Altmetric
Review

Genetic Variability in CYP2A6 and the Pharmacokinetics of Nicotine

&
Pages 1385-1402 | Published online: 02 Nov 2007

Bibliography

  • Henningfield JE , MiyasatoK, JasinskiDR: Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine.J. Pharmacol. Exp. Ther.234(1), 1–12 (1985).
  • US Department of Health, Education, and Welfare: Smoking And Health. Report Of The Advisory Committee to the Surgeon General Of The Public Health Service. In: PHS Publ. No. 1103. USDHEW, Washington, DC, USA (1964).
  • Schneider NG , PopekP, JarvikME, Gritz ER: The use of nicotine gum during cessation of smoking. Am. J. Psychiatry134(4), 439–440 (1977).
  • Puska P , BjorkqvistS, KoskelaK: Nicotine-containing chewing gum in smoking cessation: a double blind trial with half year follow-up.Addict. Behav.4(2), 141–146 (1979).
  • Levin ED , ConnersCK, SparrowE et al.: Nicotine effects on adults with attention-deficit/hyperactivity disorder.Psychopharmacology (Berl.)123(1), 55–63 (1996).
  • Potter AS , NewhousePA: Effects of acute nicotine administration on behavioral inhibition in adolescents with attention-deficit/hyperactivity disorder.Psychopharmacology (Berl.)176(2), 182–194 (2004).
  • Engeland C , MahoneyC, MohrE, Ilivitsky V, Knott VJ: Acute nicotine effects on auditory sensory memory in tacrine-treated and nontreated patients with Alzheimer‘s disease: an event-related potential study. Pharmacol. Biochem. Behav.72(1–2), 457–464 (2002).
  • White HK , LevinED: Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment.Psychopharmacology (Berl.)171(4), 465–471 (2004).
  • Vieregge A , SiebererM, JacobsH, Hagenah JM, Vieregge P: Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology57(6), 1032–1035 (2001).
  • Lemay S , ChouinardS, BlanchetP et al.: Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson‘s disease.Prog. Neuropsychopharmacol. Biol. Psychiatry28(1), 31–39 (2004).
  • Orth M , AmannB, RobertsonMM, RothwellJC: Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine.Brain128(Pt 6), 1292–1300 (2005).
  • Howson AL , BatthS, IlivitskyV et al.: Clinical and attentional effects of acute nicotine treatment in Tourette‘s syndrome.Eur. Psychiatry19(2), 102–112 (2004).
  • Ingram JR , RhodesJ, EvansBK, Thomas GA: Preliminary observations of oral nicotine therapy for inflammatory bowel disease: an open-label Phase I–II study of tolerance. Inflamm. Bowel Dis.11(12), 1092–1096 (2005).
  • McGrath J , McDonaldJW, MacdonaldJK: Transdermal nicotine for induction of remission in ulcerative colitis.Cochrane Database Syst. Rev.CD004722 (2004).
  • Benowitz NL , JacobP 3rd: Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin. Pharmacol. Ther.56(5), 483–493 (1994).
  • Messina ES , TyndaleRF, SellersEM: A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes.J. Pharmacol. Exp. Ther.282(3), 1608–1614 (1997).
  • Nakajima M , YamamotoT, NunoyaK et al.: Role of human cytochrome P4502A6 in C-oxidation of nicotine.Drug Metab. Dispos.24(11), 1212–1217 (1996).
  • Yamano S , TatsunoJ, GonzalezFJ: The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes.Biochemistry29(5), 1322–1329 (1990).
  • Nakajima M , YamamotoT, NunoyaK et al.: Characterization of CYP2A6 involved in 3´-hydroxylation of cotinine in human liver microsomes.J. Pharmacol. Exp. Ther.277(2), 1010–1015 (1996).
  • Hoffman SM , NelsonDR, KeeneyDS: Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19.Pharmacogenetics11(8), 687–698 (2001).
  • Fernandez-Salguero P , HoffmanSM, CholertonS et al.: A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles.Am. J. Hum. Genet.57(3), 651–660 (1995).
  • Solus JF , AriettaBJ, HarrisJR et al.: Genetic variation in eleven Phase I drug metabolism genes in an ethnically diverse population.Pharmacogenomics5(7), 895–931 (2004).
  • Kiyotani K , FujiedaM, YamazakiH et al.: Twenty one novel single nucleotide polymorphisms (SNPs) of the CYP2A6 gene in Japanese and Caucasians.Drug Metab. Pharmacokinet.17(5), 482–487 (2002).
  • Haberl M , AnwaldB, KleinK et al.: Three haplotypes associated with CYP2A6 phenotypes in Caucasians.Pharmacogenet. Genomics15(9), 609–624 (2005).
  • Benowitz NL , GriffinC, TyndaleR: Deficient C-oxidation of nicotine continued.Clin. Pharmacol. Ther.70(6), 567 (2001).
  • Kitagawa K , KunugitaN, KatohT, YangM, KawamotoT: The significance of the homozygous CYP2A6 deletion on nicotine metabolism: a new genotyping method of CYP2A6 using a single PCR-RFLP.Biochem. Biophys. Res. Commun.262(1), 146–151 (1999).
  • Xu C , RaoYS, XuB et al.: An in vivo pilot study characterizing the new CYP2A6*7, *8, and *10 alleles.Biochem. Biophys. Res. Commun.290(1), 318–324 (2002).
  • Fukami T , NakajimaM, YoshidaR et al.: A novel polymorphism of human CYP2A6 gene CYP2A6*17 has an amino acid substitution (V365M) that decreases enzymatic activity in vitro and in vivo.Clin. Pharmacol. Ther.76(6), 519–527 (2004).
  • Oscarson M , McLellanRA, GullstenH et al.: Identification and characterisation of novel polymorphisms in the CYP2A locus: implications for nicotine metabolism. FEBS Lett.460(2), 321–327 (1999).
  • Kitagawa K , KunugitaN, KitagawaM, KawamotoT: CYP2A6*6, a novel polymorphism in cytochrome p450 2A6, has a single amino acid substitution (R128Q) that inactivates enzymatic activity.J. Biol. Chem.276(21), 17830–17835 (2001).
  • Daigo S , TakahashiY, FujiedaM et al.: A novel mutant allele of the CYP2A6 gene (CYP2A6*11) found in a cancer patient who showed poor metabolic phenotype towards tegafur.Pharmacogenetics12(4), 299–306 (2002).
  • Fukami T , NakajimaM, HigashiE et al.: Characterization of novel CYP2A6 polymorphic alleles (CYP2A6*18 and CYP2A6*19) that affect enzymatic activity.Drug Metab. Dispos.33(8), 1202–1210 (2005).
  • Fukami T , NakajimaM, HigashiE et al.: A novel CYP2A6*20 allele found in African–American population produces a truncated protein lacking enzymatic activity.Biochem. Pharmacol.70(5), 801–808 (2005).
  • Oscarson M , McLellanRA, AspV et al.: Characterization of a novel CYP2A7/CYP2A6 hybrid allele (CYP2A6*12) that causes reduced CYP2A6 activity.Hum. Mutat.20(4), 275–283 (2002).
  • Pitarque M , von Richter O, Oke B et al.: Identification of a single nucleotide polymorphism in the TATA box of the CYP2A6 gene: impairment of its promoter activity. Biochem. Biophys. Res. Commun.284(2), 455–460 (2001).
  • Benowitz NL , SwanGE, JacobP 3rd, Lessov-Schlaggar CN, Tyndale RF: CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin. Pharmacol. Ther.80(5), 457–467 (2006).
  • Nakajima M , FukamiT, YamanakaH et al.: Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations.Clin. Pharmacol. Ther.80(3), 282–297 (2006).
  • Wang J , PitarqueM, Ingelman-Sundberg M: 3´-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochem. Biophys. Res. Commun.340(2), 491–497 (2006).
  • Mwenifumbo JC , Lessov-SchlaggarCN, ZhouQ et al.: Identification of novel CYP2A6*1B variants: the CYP2A6*1B allele is associated with faster in vivo nicotine metabolism.Clin. Pharmacol. Ther. (2007) (Epub ahead of print).
  • Rao Y , HoffmannE, ZiaM et al.: Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking.Mol. Pharmacol.58(4), 747–755 (2000).
  • Fukami T , NakajimaM, YamanakaH et al.: A novel duplication type of CYP2A6 gene in African–American population.Drug Metab. Dispos.35(4), 515–520 (2007).
  • Mwenifumbo JC , MyersMG, WallTL et al.: Ethnic variation in CYP2A6*7, CYP2A6*8 and CYP2A6*10 as assessed with a novel haplotyping method. Pharmacogenet. Genomics15(3), 189–192 (2005).
  • Al Koudsi N , MwenifumboJC, SellersEM et al.: Characterization of the novel CYP2A6*21 allele using in vivo nicotine kinetics.Eur. J. Clin. Pharmacol.62(6), 481–484 (2006).
  • Pitarque M , von Richter O, Rodriguez-Antona C et al.: A nicotine C-oxidase gene (CYP2A6) polymorphism important for promoter activity. Hum. Mutat.23(3), 258–266 (2004).
  • von Richter O , PitarqueM, Rodriguez-AntonaC et al.: Polymorphic NF-Y dependent regulation of human nicotine C-oxidase (CYP2A6).Pharmacogenetics14(6), 369–379 (2004).
  • Benowitz NL , Perez-StableEJ, FongI et al.: Ethnic differences in N´-glucuronidation of nicotine and cotinine. J. Pharmacol. Exp. Ther.291(3), 1196–1203 (1999).
  • Benowitz NL , Perez-StableEJ, HerreraB, JacobP 3rd: Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese–Americans. J. Natl Cancer Inst.94(2), 108–115 (2002).
  • Shimada T , YamazakiH, GuengerichFP: Ethnic-related differences in coumarin 7-hydroxylation activities catalyzed by cytochrome P4502A6 in liver microsomes of Japanese and Caucasian populations.Xenobiotica26(4), 395–403 (1996).
  • Fuhr U , JetterA, KirchheinerJ: Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the 'cocktail‘ approach.Clin. Pharmacol. Ther.81(2), 270–283 (2007).
  • Yamazaki H , InoueK, HashimotoM, ShimadaT: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes.Arch. Toxicol.73(2), 65–70 (1999).
  • Hukkanen J , JacobP 3rd: Benowitz NL: Metabolism and disposition kinetics of nicotine. Pharmacol. Rev.57(1), 79–115 (2005).
  • Dempsey D , TutkaP, JacobP, 3rd et al.: Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther.76(1), 64–72 (2004).
  • Yamanaka H , NakajimaM, NishimuraK et al.: Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. Eur. J. Pharm. Sci.22(5), 419–425 (2004).
  • Malaiyandi V , LermanC, BenowitzNL et al.: Impact of CYP2A6 genotype on pretreatment smoking behaviour and nicotine levels from and usage of nicotine replacement therapy. Mol. Psychiatry11(4), 400–409 (2006).
  • Lerman C , TyndaleR, PattersonF et al.: Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation.Clin. Pharmacol. Ther.79(6), 600–608 (2006).
  • Levi M , DempseyDA, BenowitzNL, SheinerLB: Population pharmacokinetics of nicotine and its metabolites I. Model development.J. Pharmacokinet. Pharmacodyn.34(1), 5–21 (2007).
  • Lea RA , DicksonS, BenowitzNL: Within-subject variation of the salivary 3HC/COT ratio in regular daily smokers: prospects for estimating CYP2A6 enzyme activity in large-scale surveys of nicotine metabolic rate.J. Anal. Toxicol.30(6), 386–389 (2006).
  • Levi M , DempseyDA, BenowitzNL, SheinerLB: Prediction methods for nicotine clearance using cotinine and 3-hydroxy-cotinine spot saliva samples II: model application.J. Pharmacokinet. Pharmacodyn.34(1), 23–34 (2007).
  • Mwenifumbo JC , SellersEM, TyndaleRF: Nicotine metabolism and CYP2A6 activity in a population of black African descent: impact of gender and light smoking.Drug Alcohol Depend.89(1), 24–33 (2007).
  • Swan GE , BenowitzNL, LessovCN et al.: Nicotine metabolism: the impact of CYP2A6 on estimates of additive genetic influence.Pharmacogenet. Genomics15(2), 115–125 (2005).
  • Yang M , KunugitaN, KitagawaK et al.: Individual differences in urinary cotinine levels in Japanese smokers: relation to genetic polymorphism of drug-metabolizing enzymes.Cancer Epidemiol. Biomarkers Prev.10(6), 589–593 (2001).
  • Byrd GD , ChangKM, GreeneJM, deBethizyJD: Evidence for urinary excretion of glucuronide conjugates of nicotine, cotinine, and trans-3´-hydroxycotinine in smokers.Drug Metab. Dispos.20(2), 192–197 (1992).
  • Neurath GB , DungerM, OrthD, PeinFG: Trans-3´-hydroxycotinine as a main metabolite in urine of smokers.Int. Arch. Occup. Environ. Health59(2), 199–201 (1987).
  • Peamkrasatam S , SriwatanakulK, Kiyotani K et al.: In vivo evaluation of coumarin and nicotine as probe drugs to predict the metabolic capacity of CYP2A6 due to genetic polymorphism in Thais. Drug Metab. Pharmacokinet.21(6), 475–484 (2006).
  • Nakajima M , KwonJT, TanakaN et al.: Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans.Clin. Pharmacol. Ther.69(1), 72–78 (2001).
  • Prather RD , TuTG, RolfCN, GorslineJ: Nicotine pharmacokinetics of Nicoderm (nicotine transdermal system) in women and obese men compared with normal-sized men.J. Clin. Pharmacol.33(7), 644–649 (1993).
  • Zeman MV , HirakiL, SellersEM: Gender differences in tobacco smoking: higher relative exposure to smoke than nicotine in women.J. Womens Health Gend. Based Med.11(2), 147–153 (2002).
  • Benowitz NL , Lessov-SchlaggarCN, Swan GE, Jacob P 3rd: Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. (2006) 79(5), 480–488.
  • Dempsey D , JacobP 3rd, Benowitz NL: Accelerated metabolism of nicotine and cotinine in pregnant smokers. J. Pharmacol. Exp. Ther.301(2), 594–598 (2002).
  • Benowitz NL , JacobP 3rd: Nicotine and cotinine elimination pharmacokinetics in smokers and nonsmokers. Clin. Pharmacol. Ther.53(3), 316–323 (1993).
  • Benowitz NL , JacobP 3rd: Effects of cigarette smoking and carbon monoxide on nicotine and cotinine metabolism. Clin. Pharmacol. Ther.67(6), 653–659 (2000).
  • Schoedel KA , SellersEM, PalmourR, TyndaleRF: Down-regulation of hepatic nicotine metabolism and a CYP2A6-like enzyme in African green monkeys after long-term nicotine administration.Mol. Pharmacol.63(1), 96–104 (2003).
  • Denton TT , ZhangX, CashmanJR: Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6.Biochem. Pharmacol.67(4), 751–756 (2004).
  • von Weymarn LB , BrownKM, MurphySE: Inactivation of CYP2A6 and CYP2A13 during nicotine metabolism.J. Pharmacol. Exp. Ther.316(1), 295–303 (2006).
  • Hakooz N , HamdanI: Effects of dietary broccoli on human in vivo caffeine metabolism: a pilot study on a group of Jordanian volunteers.Curr. Drug Metab.8(1), 9–15 (2007).
  • Anderson GD , RositoG, MohustsyMA, ElmerGW: Drug interaction potential of soy extract and Panax ginseng.J. Clin. Pharmacol.43(6), 643–648 (2003).
  • Schoedel KA , HoffmannEB, RaoY, Sellers EM, Tyndale RF: Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics14(9), 615–626 (2004).
  • Saeki M , SaitoY, JinnoH et al.: Genetic variations and haplotypes of UGT1A4 in a Japanese population.Drug Metab. Pharmacokinet.20(2), 144–151 (2005).
  • Bao Z , HeXY, DingX, PrabhuS, HongJY: Metabolism of nicotine and cotinine by human cytochrome P450 2A13.Drug Metab. Dispos.33(2), 258–261 (2005).
  • Koskela S , HakkolaJ, HukkanenJ et al.: Expression of CYP2A genes in human liver and extrahepatic tissues.Biochem. Pharmacol.57(12), 1407–1413 (1999).
  • Su T , BaoZ, ZhangQY et al.: Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.Cancer Res.60(18), 5074–5079 (2000).
  • Gourlay SG , BenowitzNL: Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine.Clin. Pharmacol. Ther.62(4), 453–463 (1997).
  • Miksys S , LermanC, ShieldsPG, MashDC, TyndaleRF: Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain.Neuropharmacology45(1), 122–132 (2003).
  • Gervot L , RochatB, GautierJC et al.: Human CYP2B6: expression, inducibility and catalytic activities.Pharmacogenetics9(3), 295–306 (1999).
  • Gonzalez FJ , CrespiCL, CzerwinskiM, GelboinHV: Analysis of human cytochrome P450 catalytic activities and expression.Tohoku J. Exp. Med.168(2), 67–72 (1992).
  • Lee AM , JepsonC, ShieldsPG et al.: CYP2B6 genotype does not alter nicotine metabolism, plasma levels, or abstinence with nicotine replacement therapy.Cancer Epidemiol Biomarkers Prev.16(6), 1312–1314 (2007).
  • Russell MA , WilsonC, PatelUA, ColePV, FeyerabendC: Comparison of effect on tobacco consumption and carbon monoxide absorption of changing to high and low nicotine cigarettes.Br. Med. J.4(5891), 512–516 (1973).
  • Kozlowski LT , JarvikME, GritzER: Nicotine regulation and cigarette smoking.Clin. Pharmacol. Ther.17(1), 93–97 (1975).
  • Benowitz NL , JacobP 3rd: Nicotine renal excretion rate influences nicotine intake during cigarette smoking. J. Pharmacol. Exp. Ther.234(1), 153–155 (1985).
  • Zhang W , KilicarslanT, TyndaleRF, Sellers EM: Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab. Dispos.29(6), 897–902 (2001).
  • Sellers EM , KaplanHL, TyndaleRF: Inhibition of cytochrome P450 2A6 increases nicotine‘s oral bioavailability and decreases smoking.Clin. Pharmacol. Ther.68(1), 35–43 (2000).
  • Sellers EM , TyndaleRF, FernandesLC: Decreasing smoking behaviour and risk through CYP2A6 inhibition.Drug Discov. Today8(11), 487–493 (2003).
  • Gourlay SG , BenowitzNL, ForbesA, McNeilJJ: Determinants of plasma concentrations of nicotine and cotinine during cigarette smoking and transdermal nicotine treatment.Eur. J. Clin. Pharmacol.51(5), 407–414 (1997).
  • Sachs DP : Effectiveness of the 4-mg dose of nicotine polacrilex for the initial treatment of high-dependent smokers.Arch. Intern. Med.155(18), 1973–1980 (1995).
  • Malaiyandi V , SellersEM, TyndaleRF: Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence.Clin. Pharmacol. Ther.77(3), 145–158 (2005).
  • Audrain-McGovern J , Al Koudsi N, Rodriguez D et al.: The role of CYP2A6 in the emergence of nicotine dependence in adolescents. Pediatrics119(1), E264–E274 (2007).
  • O‘Loughlin J , ParadisG, KimW et al.: Genetically decreased CYP2A6 and the risk of tobacco dependence: a prospective study of novice smokers.Tob. Control13(4), 422–428 (2004).
  • Iwahashi K , WagaC, TakimotoT: Whole deletion of CYP2A6 gene (CYP2A6AST;4C) and smoking behavior.Neuropsychobiology49(2), 101–104 (2004).
  • Minematsu N , NakamuraH, FuruuchiM et al.: Limitation of cigarette consumption by CYP2A6*4, *7 and *9 polymorphisms. Eur. Respir. J.27(2), 289–292 (2006).
  • Ariyoshi N , KitadaM, KamatakiT: Association between genetic polymorphism and lung cancer risk.Nippon Rinsho60(Suppl. 5), 46–49 (2002).
  • Fujieda M , YamazakiH, SaitoT et al.: Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers.Carcinogenesis25(12), 2451–2458 (2004).
  • Strasser AA , MalaiyandiV, HoffmannE, TyndaleRF, LermanC: An association of CYP2A6 genotype and smoking topography.Nicotine Tob. Res.9(4), 511–518 (2007).
  • Malaiyandi V , GoodzSD, SellersEM, TyndaleRF: CYP2A6 genotype, phenotype, and the use of nicotine metabolites as biomarkers during ad libitum smoking.Cancer Epidemiol. Biomarkers Prev.15(10), 1812–1819 (2006).
  • Gu DF , HinksLJ, MortonNE, DayIN: The use of long PCR to confirm three common alleles at the CYP2A6 locus and the relationship between genotype and smoking habit.Ann. Hum. Genet.64(Pt 5), 383–390 (2000).
  • Carter B , LongT, CinciripiniP: A meta-analytic review of the CYP2A6genotype and smoking behavior.Nicotine Tob. Res.6(2), 221–227 (2004).
  • Munafo M , ClarkT, JohnstoneE, Murphy M, Walton R: The genetic basis for smoking behavior: a systematic review and meta-analysis. Nicotine Tob. Res.6(4), 583–597 (2004).
  • Hecht SS : Approaches to cancer prevention based on an understanding of N-nitrosamine carcinogenesis.Proc. Soc. Exp. Biol. Med.216(2), 181–191 (1997).
  • Hecht SS : DNA adduct formation from tobacco-specific N-nitrosamines.Mutat. Res.424(1–2), 127–142 (1999).
  • Hecht SS : Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines.Chem. Res. Toxicol.11(6), 559–603 (1998).
  • Perera FP : Environment and cancer: who are susceptible?Science278(5340), 1068–1073 (1997).
  • Wang H , TanW, HaoB et al.: Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK.Cancer Res.63(22), 8057–8061 (2003).
  • Tan W , ChenGF, XingDY et al.: Frequency of CYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population.Int J. Cancer95(2), 96–101 (2001).
  • Kamataki T , NunoyaK, SakaiY, KushidaH, FujitaK: Genetic polymorphism of CYP2A6 in relation to cancer.Mutat. Res.428(1–2), 125–130 (1999).
  • Miyamoto M , UmetsuY, Dosaka-AkitaH et al.: CYP2A6 gene deletion reduces susceptibility to lung cancer. Biochem. Biophys. Res. Commun.261(3), 658–660 (1999).
  • London SJ , IdleJR, DalyAK, CoetzeeGA: Genetic variation of CYP2A6, smoking and risk of cancer.Lancet353(9156), 898–899 (1999).
  • Loriot MA , RebuissouS, OscarsonM et al.: Genetic polymorphisms of cytochrome P450 2A6 in a case–control study on lung cancer in a French population.Pharmacogenetics11(1), 39–44 (2001).
  • Ariyoshi N , TakahashiY, MiyamotoM et al.: Structural characterization of a new variant of the CYP2A6 gene (CYP2A6*1B) apparently diagnosed as heterozygotes of CYP2A6*1A and CYP2A6*4C. Pharmacogenetics10(8), 687–693 (2000).
  • Nakajima M , YoshidaR, FukamiT, McLeod HL, Yokoi T: Novel human CYP2A6 alleles confound gene deletion analysis. FEBS Lett.569(1–3), 75–81 (2004).
  • Oscarson M , McLellanRA, GullstenH et al.: Characterisation and PCR-based detection of a CYP2A6 gene deletion found at a high frequency in a Chinese population. FEBS Lett.448(1), 105–110 (1999).
  • Nunoya K , YokoiT, KimuraK et al.: A new deleted allele in the human cytochrome P450 2A6 (CYP2A6) gene found in individuals showing poor metabolic capacity to coumarin and (+)-cis-3,5-dimethyl-2- (3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502).Pharmacogenetics8(3), 239–249 (1998).
  • Nunoya K , YokoiT, TakahashiY et al.: Homologous unequal cross-over within the human CYP2A gene cluster as a mechanism for the deletion of the entire CYP2A6 gene associated with the poor metabolizer phenotype.J. Biochem. (Tokyo)126(2), 402–407 (1999).
  • Nunoya KI , YokoiT, KimuraK et al.: A new CYP2A6 gene deletion responsible for the in vivo polymorphic metabolism of (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride in humans.J. Pharmacol. Exp. Ther.289(1), 437–442 (1999).
  • Ariyoshi N , SekineH, SaitoK, KamatakiT: Characterization of a genotype previously designated as CYP2A6 D-type: CYP2A6*4B, another entire gene deletion allele of the CYP2A6 gene in Japanese.Pharmacogenetics12(6), 501–504 (2002).
  • Ariyoshi N , SawamuraY, KamatakiT: A novel single nucleotide polymorphism altering stability and activity of CYP2A6.Biochem. Biophys. Res. Commun.281(3), 810–814 (2001).
  • Yoshida R , NakajimaM, WatanabeY, Kwon JT, Yokoi T: Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism. Br. J. Clin. Pharmacol.54(5), 511–517 (2002).
  • Yoshida R , NakajimaM, NishimuraK et al.: Effects of polymorphism in promoter region of human CYP2A6 gene (CYP2A6*9) on expression level of messenger ribonucleic acid and enzymatic activity in vivo and in vitro.Clin. Pharmacol. Ther.74(1), 69–76 (2003).
  • Nurfadhlina M , FoongK, TehLK et al.: CYP2A6 polymorphisms in Malays, Chinese and Indians.Xenobiotica36(8), 684–692 (2006).
  • Gambier N , BattAM, MarieB et al.: Association of CYP2A6*1B genetic variant with the amount of smoking in French adults from the Stanislas cohort.Pharmacogenomics J.5(4), 271–275 (2005).
  • Huang S , CookDG, HinksLJ et al.: CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents.Pharmacogenet. Genomics15(12), 839–850 (2005).
  • Gyamfi MA , FujiedaM, KiyotaniK, YamazakiH, KamatakiT: High prevalence of cytochrome P450 2A6*1A alleles in a black African population of Ghana.Eur. J. Clin. Pharmacol.60(12), 855–857 (2005).

Website

  • CYP2A6 allele nomenclature (2001) www.cypalleles.ki.se/cyp2a6.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.