451
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of Antiparkinsonian Drug Treatment: A Systematic Review

, , &
Pages 159-176 | Published online: 07 Feb 2007

Bibliography

  • Skipper L , LiuJJ, TanEK: Polymorphisms in candidate genes: implications for the current treatment of Parkinson’s disease.Expert. Opin. Pharmacother.7(7) , 849–855 (2006).
  • Watanabe M , HaradaS, NakamuraT et al.: Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology48(4) , 190–193 (2003).
  • Lee MS , KimHS, ChoEK, LimJH, Rinne JO: COMT genotype and effectiveness of entacapone in patients with fluctuating Parkinson’s disease. Neurology58(4) , 564–567 (2002).
  • Inzelberg R , PaleacuD, ChapmanJ, KorczynAD: Re: The apolipoprotein E epsilon4 allele increases the risk of drug-induced hallucinations in Parkinson’s disease.Clin. Neuropharmacol.23(4) , 230–231 (2000).
  • Masellis M , BasileVS, OzdemirV, Meltzer HY, Macciardi FM, Kennedy JL: Pharmacogenetics of antipsychotic treatment: lessons learned from clozapine. Biol. Psychiatry47(3) , 252–266 (2000).
  • Dearry A , GingrichJA, FalardeauP, FremeauRT Jr, Bates MD, Caron MG: Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature347(6288) , 72–76 (1990).
  • Lee SP , SoCH, RashidAJ et al.: Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem.279(34) , 35671–35678 (2004).
  • Cichon S , NothenMM, ErdmannJ, ProppingP: Detection of four polymorphic sites in the human dopamine D1 receptor gene (DRD1).Hum. Mol. Genet.3(1) , 209 (1994).
  • Joyce JN , Meador-WoodruffJH: Linking the family of D2 receptors to neuronal circuits in human brain: insights into schizophrenia.Neuropsychopharmacology16(6) , 375–384 (1997).
  • Seeman P , WilsonA, GmeinerP, KapurS: Dopamine D2 and D3 receptors in human putamen, caudate nucleus, and globus pallidus.Synapse60(3) , 205–211 (2006).
  • Usiello A , BaikJH, Rouge-PontF et al.: Distinct functions of the two isoforms of dopamine D2 receptors. Nature408(6809) , 199–203 (2000).
  • Wang J , LiuZL, ChenB: Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD.Neurology56(12) , 1757–1759 (2001).
  • Neville MJ , JohnstoneEC, WaltonRT: Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1.Hum. Mutat.23(6) , 540–545 (2004).
  • Arinami T , GaoM, HamaguchiH, ToruM: A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia.Hum. Mol. Genet.6(4) , 577–582 (1997).
  • Jonsson EG , NothenMM, GrunhageF et al.: Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry4(3) , 290–296 (1999).
  • Zappia M , AnnesiG, NicolettiG et al.: Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch. Neurol.62(4) , 601–605 (2005).
  • Sokoloff P , GirosB, MartresMP, Bouthenet ML, Schwartz JC: Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature347(6289) , 146–151 (1990).
  • Muglia P , JainU, KennedyJL: A transmission disequilibrium test of the Ser9/Gly dopamine D3 receptor gene polymorphism in adult attention-deficit hyperactivity disorder.Behav. Brain Res.130(1–2) , 91–95 (2002).
  • Jeanneteau F , FunalotB, JankovicJ et al.: A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc. Natl Acad. Sci. USA103(28) , 10753–10758 (2006).
  • Griffon N , CrocqMA, PilonC et al.: Dopamine D3 receptor gene: organization, transcript variants, and polymorphism associated with schizophrenia. Am. J. Med. Genet.67(1) , 63–70 (1996).
  • Schoots O , Van Tol HH: The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenomics J.3(6) , 343–348 (2003).
  • Van Tol HH , WuCM, GuanHC et al.: Multiple dopamine D4 receptor variants in the human population. Nature358(6382) , 149–152 (1992).
  • Asghari V , SanyalS, BuchwaldtS, Paterson A, Jovanovic V, Van Tol HH: Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem.65(3) , 1157–1165 (1995).
  • Tiberi M , JarvieKR, SilviaC et al.: Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc. Natl Acad. Sci. USA88(17) , 7491–7495 (1991).
  • Wang J , LiuZL, ChenB: Dopamine D5 receptor gene polymorphism and the risk of levodopa-induced motor fluctuations in patients with Parkinson’s disease.Neurosci. Lett.308(1) , 21–24 (2001).
  • Kaiser R , HoferA, GrapengiesserA et al.: l-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology60(11) , 1750–1755 (2003).
  • Bray NJ , BucklandPR, WilliamsNM et al.: A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am. J. Hum. Genet.73(1) , 152–161 (2003).
  • Lotta T , VidgrenJ, TilgmannC et al.: Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry34(13) , 4202–4210 (1995).
  • Lachman HM , PapolosDF, SaitoT, YuYM, SzumlanskiCL, WeinshilboumRM: Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders.Pharmacogenetics6(3) , 243–250 (1996).
  • Kochersperger LM , ParkerEL, SicilianoM, DarlingtonGJ, DenneyRM: Assignment of genes for human monoamine oxidases A and B to the X chromosome.J. Neurosci. Res.16(4) , 601–616 (1986).
  • Balciuniene J , EmilssonL, OrelandL, PetterssonU, JazinE: Investigation of the functional effect of monoamine oxidase polymorphisms in human brain.Hum. Genet.110(1) , 1–7 (2002).
  • Studler JM , Javoy-AgidF, CesselinF, LegrandJC, AgidY: CCK-8-Immunoreactivity distribution in human brain: selective decrease in the substantia nigra from parkinsonian patients.Brain Res.243(1) , 176–179 (1982).
  • Weisgraber KH , RallSC Jr, Mahley RW: Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J. Biol. Chem.256(17) , 9077–9083 (1981).
  • Rall SC Jr, Weisgraber KH, Mahley RW: Human apolipoprotein E. The complete amino acid sequence. J. Biol. Chem.257(8): 4171–4178 (1982).
  • Corder EH , SaundersAM, StrittmatterWJ et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science261(5123) , 921–923 (1993).
  • Bond C , LaForgeKS, TianM et al.: Single nucleotide polymorphism in the human µ opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proc. Natl Acad. Sci. USA95(16) , 9608–9613 (1998).
  • Strong JA , DalviA, RevillaFJ et al.: Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord.21(5) , 654–659 (2006).
  • Heils A , TeufelA, PetriS et al.: Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene. J. Neural Transm. Gen. Sect.102(3) , 247–254 (1995).
  • Heils A , TeufelA, PetriS et al.: Allelic variation of human serotonin transporter gene expression. J. Neurochem.66(6) , 2621–2624 (1996).
  • Gencik M , DahmenN, WieczorekS et al.: A prepro-orexin gene polymorphism is associated with narcolepsy. Neurology56(1) , 115–117 (2001).
  • Hungs M , LinL, OkunM, MignotE: Polymorphisms in the vicinity of the hypocretin/orexin are not associated with human narcolepsy.Neurology57(10) , 1893–1895 (2001).
  • Peyron C , FaracoJ, RogersW et al.: A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med.6(9) , 991–997 (2000).
  • Contin M , MartinelliP, MochiM et al.: Dopamine transporter gene polymorphism, spect imaging, and levodopa response in patients with Parkinson disease. Clin. Neuropharmacol.27(3) , 111–115 (2004).
  • Lee MS , LyooCH, UlmanenI, Syvanen AC, Rinne JO: Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson’s disease. Neurosci. Lett.298(2) , 131–134 (2001).
  • Contin M , MartinelliP, MochiM, RivaR, AlbaniF, BaruzziA: Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic–pharmacodynamic pattern in patients with Parkinson’s disease.Mov. Disord.20(6) , 734–739 (2005).
  • Bialecka M , DrozdzikM, Klodowska-DudaG et al.: The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurol. Scand.110(4) , 260–266 (2004).
  • Tan EK , CheahSY, Fook-ChongS et al. Functional COMT variant predicts response to high dose pyridoxine in Parkinson’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet.137(1) , 1–4 (2005).
  • Chong DJ , SuchowerskyO, SzumlanskiC, WeinshilboumRM, BrantR, Campbell NR: The relationship between COMT genotype and the clinical effectiveness of tolcapone, a COMT inhibitor, in patients with Parkinson’s disease. Clin. Neuropharmacol.23(3) , 143–148 (2000).
  • Oliveri RL , AnnesiG, ZappiaM et al.: Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology53(7) , 1425–1430 (1999).
  • Fenelon G , MahieuxF, HuonR, ZieglerM: Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors.Brain123(Pt 4) , 733–745 (2000).
  • Goetz CG , BurkePF, LeurgansS et al.: Genetic variation analysis in parkinson disease patients with and without hallucinations: case–control study. Arch. Neurol.58(2) , 209–213 (2001).
  • Wang J , ZhaoC, ChenB, LiuZL: Polymorphisms of dopamine receptor and transporter genes and hallucinations in Parkinson’s disease.Neurosci. Lett.355(3) , 193–196 (2004).
  • Makoff AJ , GrahamJM, ArranzMJ et al.: Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson’s disease. Pharmacogenetics10(1) , 43–48 (2000).
  • Camicioli R , RajputA, RajputM et al.: Apolipoprotein E epsilon4 and catechol-O-methyltransferase alleles in autopsy-proven Parkinson’s disease: relationship to dementia and hallucinations. Mov. Disord.20(8) , 989–994 (2005).
  • Wang J , SiYM, LiuZL, YuL: Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease.Pharmacogenetics13(6) , 365–369 (2003).
  • Fujii C , HaradaS, OhkoshiN et al.: Association between polymorphism of the cholecystokinin gene and idiopathic Parkinson’s disease. Clin. Genet.56(5) , 394–399 (1999).
  • Goldman JG , GoetzCG, Berry-KravisE, LeurgansS, ZhouL: Genetic polymorphisms in Parkinson disease subjects with and without hallucinations: an analysis of the cholecystokinin system.Arch. Neurol.61(8) , 1280–1284 (2004).
  • de la Fuente-Fernández R , NunezMA, LopezE: The apolipoprotein E epsilon 4 allele increases the risk of drug-induced hallucinations in Parkinson’s disease.Clin. Neuropharmacol.22(4) , 226–230 (1999).
  • Feldman B , ChapmanJ, KorczynAD: Apolipoprotein epsilon4 advances appearance of psychosis in patients with Parkinson’s disease.Acta Neurol. Scand.113(1) , 14–17 (2006).
  • Paus S , SeegerG, BrechtHM et al.: Association study of dopamine D2, D3, D4 receptor and serotonin transporter gene polymorphisms with sleep attacks in Parkinson’s disease. Mov. Disord.19(6) , 705–707 (2004).
  • Rissling I , GellerF, BandmannO et al.: Dopamine receptor gene polymorphisms in Parkinson’s disease patients reporting “sleep attacks”. Mov. Disord.19(11) , 1279–1284 (2004).
  • Frauscher B , HoglB, MaretS et al.: Association of daytime sleepiness with COMT polymorphism in patients with parkinson disease: a pilot study. Sleep27(4) , 733–736 (2004).
  • Rissling I , FrauscherB, KronenbergF et al.: Daytime sleepiness and the COMT val158met polymorphism in patients with Parkinson disease. Sleep29(1) , 108–111 (2006).
  • Rissling I , KornerY, GellerF, Stiasny-KolsterK, OertelWH, MollerJC: Preprohypocretin polymorphisms in Parkinson disease patients reporting “sleep attacks”.Sleep28(7) , 871–875 (2005).
  • Malhotra AK , MurphyGM Jr, Kennedy JL: Pharmacogenetics of psychotropic drug response. Am. J. Psychiatry161(5) , 780–796 (2004).
  • Kirchheiner J , NickchenK, BauerM et al.: Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry9(5) , 442–473 (2004).
  • Arranz MJ , MunroJ, OsborneS, CollierD, KerwinRW: Applications of pharmacogenetics in psychiatry: personalisation of treatment.Expert. Opin. Pharmacother.2(4) , 537–542 (2001).
  • Kunugi H , NankoS, UekiA et al.: High and low activity alleles of catechol-O-methyltransferase gene: ethnic difference and possible association with Parkinson’s disease. Neurosci. Lett.221(2–3) , 202–204 (1997).
  • Palmer LJ , CooksonWO: Using single nucleotide polymorphisms as a means to understanding the pathophysiology of asthma.Respir. Res.2(2) , 102–112 (2001).
  • Cordell HJ , ClaytonDG: Genetic association studies.Lancet366(9491) , 1121–1131 (2005).
  • Klemetsdal B , StraumeB, WistE, Aarbakke J: Identification of factors regulating thiopurine methyltransferase activity in a Norwegian population. Eur. J. Clin. Pharmacol.44(2) , 147–152 (1993).
  • Pan T , XieW, JankovicJ, LeW: Biological effects of pramipexole on dopaminergic neuron-associated genes: relevance to neuroprotection.Neurosci. Lett.377(2) , 106–109 (2005).
  • Parkinson Study Group: Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA287(13) , 1653–1661 (2002).
  • Dodd ML , KlosKJ, BowerJH, GedaYE, JosephsKA, AhlskogJE: Pathological gambling caused by drugs used to treat Parkinson disease.Arch. Neurol.62(9) , 1377–1381 (2005).
  • Szarfman A , DoraiswamyPM, TonningJM, LevineJG: Association between pathologic gambling and parkinsonian therapy as detected in the Food and Drug Administration Adverse Event database.Arch. Neurol.63(2) , 299–300 (2006).
  • Evans AH , KatzenschlagerR, PaviourD et al.: Punding in Parkinson’s disease: its relation to the dopamine dysregulation syndrome. Mov. Disord.19(4) , 397–405 (2004).
  • Klos KJ , BowerJH, JosephsKA, MatsumotoJY, AhlskogJE: Pathological hypersexuality predominantly linked to adjuvant dopamine agonist therapy in Parkinson’s disease and multiple system atrophy.Parkinsonism Relat. Disord.11(6) , 381–386 (2005).
  • Basile VS , MasellisM, BadriF et al.: Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology21(1) , 17–27 (1999).
  • Lin Z , WaltherD, YuXY, DrgonT, Uhl GR: The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse. Pharmacogenetics14(12) , 805–811 (2004).
  • Wilkinson GR : Drug metabolism and variability among patients in drug response.N. Engl. J. Med.352(21) , 2211–2221: 2005.
  • Wynalda MA , WienkersLC: Assessment of potential interactions between dopamine receptor agonists and various human cytochrome P450 enzymes using a simple in vitro inhibition screen.Drug Metab. Dispos.25(10) , 1211–1214 (1997).
  • Daly AK , BrockmollerJ, BrolyF et al.: Nomenclature for human CYP2D6 alleles. Pharmacogenetics6(3) , 193–201 (1996).
  • Yasuda K , LanLB, SanglardD, FuruyaK, SchuetzJD, SchuetzEG: Interaction of cytochrome P450 3A inhibitors with P-glycoprotein.J. Pharmacol. Exp. Ther.303(1) , 323–332 (2002).
  • Uhr M , EbingerM, RosenhagenMC, GrauerMT: The anti-Parkinson drug budipine is exported actively out of the brain by P-glycoprotein in mice.Neurosci. Lett.383(1–2) , 73–76 (2005).

Websites

  • National Centre for Biotechnology Information PubMed database. www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed
  • Embase database. www.embase.com
  • ISI Web of Science. http://wos.mimas.ac.uk/
  • Genetic Association Database – archive of human genetic association studies of complex diseases and disorders. http://geneticassociationdb.nih.gov
  • National Centre for Biotechnology Information – information about human genomic discoveries. www.cdc.genomics.hugenet/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.