1,596
Views
4
CrossRef citations to date
0
Altmetric
Perspective

CYP2C8 and Antimalaria Drug Efficacy

&
Pages 187-198 | Published online: 07 Feb 2007

Bibliography

  • Breman JG . The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am. J. Trop. Med. Hyg.64(Suppl. 1–2) , 1–11 (2001).
  • Sachs J , MalaneyP: The economic and social burden of malaria.Nature415(6872) , 680–685 (2002)
  • Girard MP , ReedZH, FriedeM, KienyMP: A review of human vaccine research and development: malaria.Vaccine (2006) (Epub ahead of print).
  • Nosten F , BrasseurP: Combination therapy for malaria: the way forward?Drugs62(9) , 1315–1329 (2002).
  • Li XQ , BjorkmanA, AnderssonTB, RidderstromM, MasimirembwaCM: Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate.J. Pharmacol. Exp. Ther.300(2) , 399–407 (2002).
  • Walsky RL , ObachRS: Validated assays for human cytochrome P450 activities.Drug Metab. Dispos.32(6) , 647–660 (2004).
  • Projean D , BauneB, FarinottiR et al.: In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab. Dispos.31(6) , 748–754 (2003).
  • Winter HR , WangY, UnadkatJD: CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone.Drug Metab. Dispos.28(8) , 865–868 (2000).
  • Pang T : Impact of pharmacogenomics on neglected diseases of the developing world.Am. J. Pharmacogenomics3(6) , 393–398 (2003).
  • Gray IC , NobileC, MuresuR, FordS, Spurr NK:A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10.24. Genomics28 , 328–332 (1995).
  • Klose TS , BlaisdellJA, GoldsteinJA: Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs.J. Biochem. Mol. Toxicol.13(6) , 289–295 (1999).
  • Johnson EF , StoutCD: Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases.Biochem. Biophys. Res. Commun.338(1) , 331–336 (2005).
  • Totah RA , RettieAE: Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics and clinical relevance.Clin. Pharmacol. Ther.77(5) , 341–352. (2005).
  • Nishimura M , YoshitsuguH, NaitoS, HiraokaI: Evaluation of gene induction of drug-metabolizing enzymes and transporters in primary culture of human hepatocytes using high-sensitivity real-time reverse transcription PCR.Yakugaku Zasshi122(5) , 339–361 (2002).
  • Thum T , BorlakJ: Gene expression in distinct regions of the heart.Lancet355(9208) , 979–983 (2000).
  • Enayetallah AE , FrenchRA, ThibodeauMS, GrantDF: Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues.J. Histochem. Cytochem.52(4) , 447–454 (2004).
  • Dai D , ZeldinDC, BlaisdellJA et al.: Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics11(7) , 597–607 (2001).
  • Bahadur N , LeathartJB, MutchE et al.: CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem. Pharmacol.64(11) , 1579–1589 (2002).
  • Soyama A , SaitoY, HaniokaN et al.: Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol. Pharm. Bull.24(12) , 1427–1430 (2001).
  • Soyama A , SaitoY, KomamuraK et al.: Five novel single nucleotide polymorphisms in the CYP2C8 gene, one of which induces a frame-shift. Drug Metab. Pharmacokinet.17(4) , 374–377 (2002).
  • Hichiya H , Tanaka-KagawaT, SoyamaA et al.: Functional characterization of five novel CYP2C8 variants, G171S, R186X, R186G, K247R, and K383N, found in a Japanese population. Drug Metab. Dispos.33(5) , 630–636. (2005).
  • White NJ : Assessment of the pharmacodynamic properties of antimalarial drugs in vivo.Antimicrob. Agents Chemother.41(7) , 1413–1422 (1997).
  • Hastings IM , WardSA: Coartem (artemether-lumefantrine) in Africa: the beginning of the end?J. Infect. Dis.192(7) , 1303–1304 (2005).
  • Bjorkman A , Phillips-HowardPA: The epidemiology of drug-resistant malaria.Trans. R. Soc. Trop. Med. Hyg.84(2) , 177–180 (1990).
  • Hwang J , BitarakwateE, PaiM, ReingoldA, RosenthalPJ, DorseyG: Chloroquine or amodiaquine combined with sulfadoxine-pyrimethamine for uncomplicated malaria: a systematic review.Trop. Med. Int. Health11(6) , 789–799 (2006).
  • Winstanley P , EdwardsG, OrmeM, BreckenridgeA: The disposition of amodiaquine in man after oral administration.Br. J. Clin. Pharmacol.23(1) , 1–7 (1987).
  • Churchill FC , PatchenLC, CampbellCC, SchwartzIK, Nguyen-DinhP, Dickinson CM: Amodiaquine as a prodrug: importance of metabolite(s) in the antimalarial effect of amodiaquine in humans. Life Sci.36(1) , 53–62 (1985).
  • Mount DL , PatchenLC, Nguyen-DinhP, BarberAM, SchwartzIK, ChurchillFC: Sensitive analysis of blood for amodiaquine and three metabolites by high-performance liquid chromatography with electrochemical detection.J. Chromatogr.383(2) , 375–386 (1986).
  • Pussard E , VerdierF: Antimalarial 4-aminoquinolines: mode of action and pharmacokinetics.Fundam. Clin. Pharmacol.8(1) , 1–17 (1994).
  • Pussard E , VerdierF, FaurissonF, ScherrmannJM, Le Bras J, Blayo MC: Disposition of monodesethylamodiaquine after a single oral dose of amodiaquine and three regimens for prophylaxis against Plasmodium falciparum malaria. Eur. J. Clin. Pharmacol.33(4) , 409–414 (1987).
  • White NJ , LooareesuwanS, EdwardsG et al.: Pharmacokinetics of intravenous amodiaquine. Br. J. Clin. Pharmacol.23(2) , 127–135 (1987).
  • Soyama A , HaniokaN, SaitoY et al.: Amiodarone N-deethylation by CYP2C8 and its variants, CYP2C8*3 and CYP2C8 P404A. Pharmacol. Toxicol.91(4) , 174–178 (2002).
  • Niemi M , LeathartJB, NeuvonenM, BackmanJT, DalyAK, NeuvonenPJ: Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide:Clin. Pharmacol. Ther.74(4) , 380–387 (2003).
  • Garcia-Martin E , MartinezC, TabaresB, FriasJ, AgundezJA: Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms.Clin. Pharmacol. Ther.76(2) , 119–127 (2004).
  • Martinez C , Garcia-MartinE, BlancoG, GamitoFJ, LaderoJM, AgundezJA: The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects.Br. J. Clin. Pharmacol.59(1) , 62–69 (2005).
  • Bidstrup TB , DamkierP, OlsenAK, EkblomM, KarlssonA, BrosenK: The impact of CYP2C8 polymorphism and grapefruit juice on the pharmacokinetics of repaglinide.Br. J. Clin. Pharmacol.61(1) , 49–57 (2006).
  • Henningsson A , MarshS, LoosWJ et al.: Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res.11(22) , 8097–8104 (2005).
  • Pedersen RS , DamkierP, BrosenK: The effects of human CYP2C8 genotype and fluvoxamine on the pharmacokinetics of rosiglitazone in healthy subjects.Br. J. Clin. Pharmacol.62(6) , 682–689 (2006).
  • Holmgren G , GilJP, FerreiraPM, VeigaMI, ObonyoCO, BjorkmanA: Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y.Infect. Genet. Evol.6(4) , 309–314. (2006).
  • Ginsburg H , WardSA, BrayPG: An integrated model of chloroquine action.Parasitol. Today.15(9) , 357–360 (1999).
  • Bray PG , HawleySR, MungthinM, Ward SA: Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum. Mol. Pharmacol.50(6) , 1559–1566 (1996).
  • Echeverry DF , MurilloC, PiedadRP, Osorio L: Susceptibility of Colombian Plasmodium falciparum isolates to 4-aminoquinolines and the definition of amodiaquine resistance in vitro. Mem. Inst. Oswaldo Cruz101(3) , 341–344 (2006).
  • Mariga ST , GilJP, SisowathC, Wernsdorfer WH, Bjorkman A: Synergism between amodiaquine and its major metabolite, desethylamodiaquine, against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother.48(11) , 4089–4096 (2004).
  • Minzi OM , RaisM, SvenssonJO, GustafssonLL, EricssonO: High-performance liquid chromatographic method for determination of amodiaquine, chloroquine and their monodesethyl metabolites in biological samples.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.783(2) , 473–480 (2003).
  • Pradines B , Mabika Mamfoumbi M, Parzy D et al.: In vitro susceptibility of Gabonese wild isolates of Plasmodium falciparum to artemether, and comparison with chloroquine, quinine, halofantrine and amodiaquine. Parasitology117(Pt 6) , 541–541 (1998).
  • Pradines B , TallA, ParzyD et al.: In vitro activity of pyronaridine and amodiaquine against African isolates (Senegal) of Plasmodium falciparum in comparison with standard antimalarial agents. J. Antimicrob. Chemother.42(3) , 333–339 (1998).
  • Moreno A , BrasseurP, Cuzin-OuattaraN, BlancC, DruilheP: Evaluation under field conditions of the colourimetric DELI-microtest for the assessment of Plasmodium falciparum drug resistance.Trans. R. Soc. Trop. Med. Hyg.95(1) , 100–103 (2001).
  • Pradines B , TallA, RogierC et al.: In vitro activities of ferrochloroquine against 55 Senegalese isolates of Plasmodium falciparum in comparison with those of standard antimalarial drugs. Trop. Med. Int. Health7(3) , 265–270 (2002).
  • Randrianarivelojosia M , HarisoaJL, RabarijaonaLP et al.: In vitro sensitivity of Plasmodium falciparum to amodiaquine compared with other major antimalarials in Madagascar. Parassitologia44(3–4) , 141–147 (2002).
  • Hombhanje FW , HwaihwanjeI, Tsukahara T et al.: The disposition of oral amodiaquine in Papua New Guinean children with falciparum malaria. Br. J. Clin. Pharmacol.59(3) , 298–301 (2005).
  • Gupta S , ThaparMM, MarigaST, WernsdorferWH, BjorkmanA: Plasmodium falciparum: in vitro interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine.Exp. Parasitol.100(1) , 28–35 (2002).
  • Mariga ST , GilJP, WernsdorferWH, BjorkmanA: Pharmacodynamic interactions of amodiaquine and its major metabolite desethylamodiaquine with artemisinin, quinine and atovaquone in Plasmodium falciparum in vitro.Acta Trop.93(3) , 221–231 (2005).
  • Neftel KA , WoodtlyW, SchmidM, Frick PG, Fehr J: Amodiaquine induced agranulocytosis and liver damage. BMJ292(6522) , 721–723 (1986).
  • Olliaro P , NevillC, LeBrasJ et al.: Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet348(9036) , 1196–1201 (1996).
  • Clarke JB , NeftelK, KitteringhamNR, Park BK: Detection of antidrug IgG antibodies in patients with adverse drug reaction to amodiaquine. Int. Arch. Allergy Appl. Immunol95 , 369–375 (1991).
  • Jewell H , MaggsJL, HarrisonAC, O‘Neill PM, Ruscoe JE, Park BK: Role of hepatic metabolism in the bioactivation and detoxification of amodiaquine. Xenobiotica25 , 199–217 (1995).
  • Tingle MD , JewellH, MaggsJL, O‘Neill PM, Park BK: The bioactivation of amodiaquine by human polymorphonuclear leucocytes in vitro: chemical mechanisms and the effects of fluorine substitution. Biochem. Pharmacol.50 , 1113–1119 (1995).
  • Olliaro P , MussanoP: Amodiaquine for treating malaria.Cochrane Database Syst. Rev.CD000016 (2003).
  • Mutabingwa TK : Artemisinin-based combination therapies (ACTs), best hope for malaria treatment but inaccessible to the needy!Acta Trop.95(3) , 305–315 (2005).
  • Gerbal-Chaloin S , PascussiJM, Pichard-GarciaL et al.: Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab. Dispos.29(3) , 242–251 (2001).
  • Burk O , ArnoldKA, NusslerAK et al.: Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharmacol.67(6) , 1954–1965 (2005).
  • Simonsson US , LindellM, Raffalli-Mathieu F, Lannerbro A, Honkakoski P, Lang MA: In vivo and mechanistic evidence of nuclear receptor CAR induction by artemisinin. Eur. J. Clin. Invest.36(9) , 647–653 (2006).
  • Walsky RL , GamanEA, ObachRS: Examination of 209 drugs for inhibition of cytochrome P450 2C8.J. Clin. Pharmacol.45(1) , 68–78 (2005).
  • Gustafsson LL , RomboL, AlvanG, BjorkmanA, LindM, WalkerO: On the question of dose-dependent chloroquine elimination of a single oral dose.Clin. Pharmacol. Ther.34(3) , 383–385 (1983).
  • de Vries PJ , van Oosterhuis BV: Single dose pharmacokinetics of chloroquine and its main metabolite in healthy volunteers. Drug Invest.8(3) , 143–149 (1994).
  • Ette EI , EssienEE, ThomasWO, Brown-AwalaEA: Pharmacokinetics of chloroquine and some of its metabolites in healthy volunteers: a single dose study.J. Clin. Pharmacol.29(5) , 457–462 (1989).
  • Burchard GD , EhrhardtS, Mockenhaupt FP et al.: Renal dysfunction in children with uncomplicated, Plasmodium falciparum malaria in Tamale, Ghana. Ann. Trop. Med. Parasitol.97(4) , 345–350 (2003).
  • Alloueche A , BaileyW, BartonS et al.: Comparison of chlorproguanil-dapsone with sulfadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in young African children: double-blind randomised controlled trial. Lancet363(9424) , 1843–1848 (2004).
  • Winstanley P , WatkinsW, MuhiaD, SzwandtS, AmukoyeE, MarshK: Chlorproguanil/dapsone for uncomplicated Plasmodium falciparum malaria in young children: pharmacokinetics and therapeutic range.Trans. R. Soc. Trop. Med. Hyg.91 , 322–327 (1997).
  • Curtis J , MaxwellCA, MsuyaFH, MkongewaS, AllouecheA, WarhurstDC: Mutations in dhfr in Plasmodium falciparum infections selected by chlorproguanil-dapsone treatment.J. Infect. Dis.186(12) , 1861–1864 (2002).
  • Bluhm RE , AdedoyinA, McCarverDG, BranchRA: Development of dapsone toxicity in patients with inflammatory dermatoses: activity of acetylation and hydroxylation of dapsone as risk factors.Clin. Pharmacol. Ther.65(6) , 598–605 (1999).
  • Cavaco I , Stromberg-NorklitJ, KanekoA et al.: CYP2C8 polymorphism frequencies among malaria patients in Zanzibar. Eur. J. Clin. Pharmacol.61(1) , 15–18 (2005).
  • Röwer S , BienzleU, WeiseA et al.: High prevalence of the cytochrome P450 2C8*2 mutation in Northern Ghana. Trop. Med. Int. Health10(12) , 1271–1273 (2005).
  • Muthiah YD , LeeWL, TehLK, OngCE, IsmailR: Genetic polymorphism of CYP2C8 in three Malaysian ethnics: CYP2C8*2 and CYP2C8*3 are found in Malaysian Indians.J. Clin. Pharm. Ther.30(5) , 487–490 (2005).
  • Solus JF , AriettaBJ, HarrisJR et al.: Genetic variation in eleven Phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics5(7) , 895–931 (2004).
  • Dreisbach AW , JapaS, SigelA et al.: The prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am. J. Hypertens.18(10) , 1276–1281 (2005).
  • King LM , GainerJV, DavidGL et al.: Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension. Pharmacogenet. Genomics15(1) , 7–13 (2005).
  • Cavaco I , PiedadeR, GilJP, RibeiroV: CYP2C8 polymorphism among the Portuguese.Clin. Chem. Lab. Med.44(2) , 168–170 (2006).
  • Nakajima M , FujikiY, NodaK et al.: Genetic polymorphisms of CYP2C8 in Japanese population. Drug Metab. Dispos.31(6) , 687–690 (2003).

Websites

  • Human Cytochrome P450 Allele Nomenclature Committee. www.cypalleles.ki.se/
  • WHO: Global Malaria Program – treatment policies. www.who.int/malaria/treatmentpolicies.html
  • Medicines for Malaria Venture. www.mmv.org
  • US Institute of Health artesunate and amodiaquine fixed-dose combination in the treatment of uncomplicated Plasmodium falciparum malaria study. www.clinicaltrials.gov/ct/show/NCT00316 329

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.