289
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics in the Treatment of Rheumatoid Arthritis: Clinical Implication and Perspective

, &
Pages 151-163 | Published online: 05 May 2006

Bibliography

  • Wolfe F , CushJJ, O’DellJR et al.: Consensus recommendations for the assessment and treatment of rheumatoid arthritis. J. Rheumatol.28, 1423–1430 (2001).
  • Grigor C , CapellH, StirlingA et al.: Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet364, 263–269 (2004).
  • Sokka T, Hannonen P, Mottonen T: Conventional disease-modifying antirheumatic drugs in early arthritis. Rheum. Dis. Clin. North. Am.31, 729–744 (2005).
  • Strand V , CohenS, SchiffM et al.: Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch. Intern. Med.159, 2542–2550 (1999).
  • Smolen JS , KaldenJR, ScottDL et al.: Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multicentre trial. European Leflunomide Study Group. Lancet353, 259–266 (1999).
  • Pincus T : Aggressive treatment of early rheumatoid arthritis to prevent joint damage.Bull. Rheum. Dis.47, 2–7 (1998).
  • Boers M , VerhoevenAC, MarkusseHM et al.: Randomised comparison of combined step-down prednisolone, methotrexate and sulphasalazine with sulphasalazine alone in early rheumatoid arthritis. Lancet350, 309–318 (1997).
  • Mottonen T , HannonenP, Leirisalo-Repo M et al.: Comparison of combination therapy with single-drug therapy in early rheumatoid arthritis: a randomised trial. FIN-RACo trial group. Lancet353, 1568–73 (1999).
  • Moreland LW , KoopmanWJ: Biologic response modifiers for treating musculoskeletal disorders. In:Arthritis and Allied Conditions. Koopman WJ (Ed.), Lippincott Williams & Wilkins, Philadelphia, USA, 877–920 (2001).
  • Padyukov L , LampaJ, HeimburgerM et al.: Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann. Rheum. Dis.62, 526–529 (2003).
  • Ranganathan P , EisenS, YokoyamaWM, McLeodHL: Will pharmacogenetics allow better prediction of methotrexate toxicity and efficacy in patients with rheumatoid arthritis?Ann. Rheum. Dis.62, 4–9 (2003).
  • Goldstein DB , TateSK, SisodiyaSM: Pharmacogenetics goes genomic.Nature Rev. Genet.4, 937–947 (2003).
  • Goetz MP , AmesMM, WeinshilboumRM: Primer on medical genomics part XII: pharmacogenomics – general principles with cancer as a model.Mayo Clin. Proc.79, 376–394 (2004).
  • Pullar T , HunterJA, CapellHA: Effect of acetylator phenotype on efficacy and toxicity of sulphasalazine in rheumatoid arthritis.Ann. Rheum. Dis.44, 831–837 (1985).
  • Stolk JN , BoerboomsAM, de Abreu RA et al.: Reduced thiopurine methyltransferase activity and development of side effects of azathioprine treatment in patients with rheumatoid arthritis. Arthritis Rheum.41, 1858–1866 (1998).
  • Bathon JM , MartinRW, FleischmannRM et al.: A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med.343, 1586–1593 (2000).
  • Weinblatt ME : Methotrexate. In:Textbook of Rheumatology. Kelley WN, Harris ED Jr, Ruddy S, Sledge CB (Eds.), WB Saunders, Philadelphia, USA, 771–786 (1997).
  • Frosst P , BlomHJ, MilosR et al.: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genet.10, 111–113 (1995).
  • Weisberg I , TranP, ChristensenB, SibaniS, RozenR: A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity.Mol. Genet. Metab.64, 169–172 (1998).
  • Bagley PJ , SelhubJ: A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells.Proc. Natl. Acad. Sci. USA.95, 13217–13220 (1998).
  • van der Put NM, Gabreels F, Stevens EM et al.: A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am. J. Hum. Genet.62, 1044–1051 (1998).
  • van Ede AE , LaanRF, BlomHJ et al.: The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum.44, 2525–2530 (2001).
  • Urano W , TaniguchiA, YamanakaH et al.: Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics12, 183–190 (2002).
  • Kumagai K , HiyamaK, OyamaT, Maeda H, Kohno N: Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int. J. Mol. Med.11, 593–600 (2003).
  • Berkun Y , LevartovskyD, RubinowA et al.: Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann. Rheum. Dis.63, 1227–1231 (2004).
  • Schmeling H , BiberD, HeinsS, HorneffG: Influence of methylenetetrahydrofolate reductase polymorphisms on efficacy and toxicity of methotrexate in patients with juvenile idiopathic arthritis.J. Rheumatol.32, 1832–1836 (2005).
  • Ranganathan P , CulverhouseR, MarshS et al.: Single nucleotide polymorphism profiling across the methotrexate pathway in normal subjects and patients with rheumatoid arthritis. Pharmacogenomics5, 559–569 (2004).
  • van Ede AE, Laan RF, Rood MJ et al.: Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum.44, 1515–24 (2001).
  • Hoekstra M, van de Laar MA, Bernelot Moens HJ, Kruijsen MW, Haagsma CJ: Longterm observational study of methotrexate use in a Dutch cohort of 1022 patients with rheumatoid arthritis. J. Rheumatol.30, 2325–2329 (2003).
  • American C ollege of Rheumatology Ad Hoc Committee on Clinical Guidelines: Guidelines for monitoring drug therapy in rheumatoid arthritis. Arthritis Rheum.32, 723–731 (1996)
  • Khanna D , ParkGS, PaulusHE et al.: Reduction of the efficacy of methotrexate by the use of folic acid: post hoc analysis from two randomized controlled studies. Arthritis Rheum.52, 3030–3038 (2005).
  • Morgan SL , BaggottJE, LeeJY, AlarconGS: Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during longterm, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention.J. Rheumatol.25, 441–446 (1998).
  • van E de AE, Laan RF, Blom HJ et al.: Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology (Oxford)41, 658–665 (2002).
  • Evans WE : Differing effects of methylenetetrahydrofolate reductase single nucleotide polymorphisms on methotrexate efficacy and toxicity in rheumatoid arthritis.Pharmacogenetics12, 181–182 (2002).
  • Delano DL , MontesinosMC, DesaiA et al.: Genetically based resistance to the antiinflammatory effects of methotrexate in the air-pouch model of acute inflammation. Arthritis Rheum.52, 2567–2575 (2005).
  • Chan ES , CronsteinBN: Molecular action of methotrexate in inflammatory diseases.Arthritis Res.4, 266–273 (2002).
  • Dervieux T , FurstD, LeinDO et al.: Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum.50, 2766–2774 (2004).
  • Dervieux T , KremerJ, LeinDO et al.: Contribution of common polymorphisms in reduced folate carrier and γ-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics14, 733–739 (2004).
  • Dervieux T , FurstD, LeinDO et al.: Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann. Rheum. Dis.64, 1180–1185 (2005).
  • Chango A , Emery-FillonN, de Courcy GP, et al.: A polymorphism (80G>A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol. Genet. Metab.70, 310–315 (2000).
  • Laverdiere C , ChiassonS, CosteaI, MoghrabiA, KrajinovicM: Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia.Blood100, 3832–3834 (2002).
  • Krajinovic M , CosteaI, ChiassonS: Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia.Lancet359, 1033–1034 (2002).
  • Chave KJ , RyanTJ, ChmuraSE, GalivanJ: Identification of single nucleotide polymorphisms in the human γ-glutamyl hydrolase gene and characterization of promoter polymorphisms.Gene319, 167–175 (2003).
  • Baggott JE , BridgesSL Jr, Morgan SL: Evidence for two phenotypes in the metabolism of methotrexate to 7-hydroxymethotrexate in patients with rheumatoid arthritis. Arthritis Rheum.52, 356–358 (2005).
  • Jackson CG , CleggDO: Sulfasalazine and minocycline. In:Arthritis and Allied Conditions. Koopman WJ (Ed), Lippincott Williams & Wilkins, Philadelphia, USA, 767–782 (2001).
  • Sekine A , SaitoS, IidaA et al.: Identification of single nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes NAT1, NAT2, AANAT, ARD1 and L1CAM in the Japanese population. J. Hum. Genet.46, 314–319 (2001).
  • Blum M , DemierreA, GrantDM, HeimM, MeyerUA: Molecular mechanism of slow acetylation of drugs and carcinogens in humans.Proc. Natl Acad. Sci. USA88, 5237–5241 (1991).
  • Bell DA , TaylorJA, ButlerMA et al.: Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African–Americans. Carcinogenesis14, 1689–1692 (1993).
  • Hickman D , SimE: N-acetyltransferase polymorphism. Comparison of phenotype and genotype in humans.Biochem. Pharmacol.42, 1007–1014 (1991).
  • Tanaka E, Taniguchi A, Urano W et al.: Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at the N-acetyltransferase 2 gene. J. Rheumatol.29, 2492–2499 (2002).
  • McLeod HL , SivaC. The thiopurine S-methyltransferase gene locus – implications for clinical pharmacogenomics. Pharmacogenomics3, 89–98 (2002).
  • Yates CR , KrynetskiEY, LoennechenT et al.: Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med.126, 608–614 (1997).
  • Black AJ , McLeodHL, CapellHA et al.: Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann. Intern. Med.129, 716–718 (1998).
  • Corominas H , DomenechM, LaizA et al.: Is thiopurine methyltransferase genetic polymorphism a major factor for withdrawal of azathioprine in rheumatoid arthritis patients? Rheumatology(Oxford)42, 40–45 (2003).
  • Tanaka E , TaniguchiA, UranoW, YamanakaH, KamataniN: Pharmacogenetics of disease-modifying antirheumatic drugs.Best. Pract. Res. Clin. Rheumatol.18, 233–47 (2004)
  • Takada K , ArefayeneM, DestaZ et al.: Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis. Arthritis Rheum.50, 2202–2210 (2004).
  • Rozman B: Clinical pharmacokinetics of leflunomide. Clin. Pharmacokinet.41, 421–430 (2002).
  • Kalgutkar AS , NguyenHT, VazAD et al.: In vitro metabolism studies on the isoxazole ring scission in the anti-inflammatory agent lefluonomide to its active α-cyanoenol metabolite A771726: mechanistic similarities with the cytochrome P450-catalyzed dehydration of aldoximes. Drug Metab. Dispos.31, 1240–1250 (2003).
  • Cush JJ : Cytokine therapies. In:Rheuamtology. Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH (Eds), Mosby, Edinburgh, UK, 461–484 (2003).
  • Ranganathan P : Pharmacogenomics of tumor necrosis factor antagonists in rheumatoid arthritis.Pharmacogenomics6, 481–90 (2005).
  • Lipsky PE , van der Heijde DM, St Clair EW et al.: Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N. Engl. J. Med.343, 1594–1602 (2000).
  • Braun N , MichelU, ErnstBP et al.: Gene polymorphism at position -308 of the tumor-necrosis-factor-α (TNF-α) in multiple sclerosis and its influence on the regulation of TNF-α production. Neurosci. Lett.215, 75–78 (1996).
  • van H eel DA, Udalova IA, De Silva AP et al.: Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF(-κ)B transcription factors. Hum. Mol. Genet.11, 1281–1289 (2002).
  • Bayley JP , de Rooij H, van den Elsen PJ, Huizinga TW, Verweij CL: Functional analysis of linker-scan mutants spanning the -376, -308, -244, and -238 polymorphic sites of the TNF-α promoter. Cytokine14, 316–23 (2001).
  • Mugnier B , BalandraudN, DarqueA, RoudierC, RoudierJ, RevironD et al.: Polymorphism at position -308 of the tumor necrosis factor α gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum.48, 1849–1852 (2003).
  • Kang CP , LeeKW, YooDH, KangC, Bae SC: The influence of a polymorphism at position -857 of the tumour necrosis factor α gene on clinical response to etanercept therapy in rheumatoid arthritis. Rheumatology (Oxford)44, 547–552 (2005).
  • Fabris M , TolussoB, Di Poi E, Assaloni R, Sinigaglia L, Ferraccioli G: Tumor necrosis factor-α receptor II polymorphism in patients from southern Europe with mild-moderate and severe rheumatoid arthritis. J. Rheumatol.29, 1847–1850 (2002).
  • Field M .: Tumour necrosis factor polymorphisms in rheumatic diseases.QJM. 94, 237–246 (2001).
  • Martinez A , SalidoM, BonillaG et al.: Association of the major histocompatibility complex with response to infliximab therapy in rheumatoid arthritis patients. Arthritis Rheum.50, 1077–1082 (2004).
  • Criswell LA , LumRF, TurnerKN et al.: The influence of genetic variation in the HLA-DRB1 and LTA-TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept. Arthritis Rheum.50, 2750–2756 (2004).
  • Tutuncu Z , KavanaughA, ZvaiflerN, Corr M, Deutsch R, Boyle D: Fcγ receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor α-blocking agents. Arthritis Rheum.52, 2693–2696 (2005).
  • Cartron G , DacheuxL, SallesG et al.: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fcγ RIIIa gene. Blood99, 754–758 (2002).
  • Felson DT , AndersonJJ, BoersM et al.: American College of Rheumatology. Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum.38, 727–735 (1995).
  • Prevoo ML , van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL: Modified disease activity scores that include 28-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum.38, 44–48 (1995).
  • Cuchacovich M , FerreiraL, AlisteM et al.: Tumour necrosis factor-α (TNF-α) levels and influence of -308 TNF-α promoter polymorphism on the responsiveness to infliximab in patients with rheumatoid arthritis. Scand. J. Rheumatol.33, 228–232 (2004).
  • Balog A , KlauszG, GalJ et   al.: Investigation of the prognostic value of TNF-α gene polymorphism among patients treated with infliximab, and the effects of infliximab therapy on TNF-α production and apoptosis. Pathobiology71, 274–280 (2004).
  • Fonseca JE, Carvalho T, Cruz M et al.: Polymorphism at position -308 of the tumour necrosis factor α gene and rheumatoid arthritis pharmacogenetics. Ann. Rheum. Dis.64, 793–794 (2005).
  • Kaijzel EL , BayleyJP, van Krugten MV et al.: Allele-specific quantification of tumor necrosis factor α (TNF) transcription and the role of promoter polymorphisms in rheumatoid arthritis patients and healthy individuals. Genes Immun.2, 135–144 (2001).
  • Bayley JP , OttenhoffTH, VerweijCL: Is there a future for TNF promoter polymorphisms?Genes Immun.5, 315–329 (2004).
  • Listing J , StrangfeldA, KaryS et al.: Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum.52, 3403–3412 (2005).
  • Hughes LB , CriswellLA, BeasleyTM et al.: Genetic risk factors for infection in patients with early rheumatoid arthritis. Genes Immun.5, 641–647 (2004).
  • Xie-HG, F rueh FW: Pharmacogenomics steps toward personalized medicine. Personalized Med.2, 325–337 (2005).
  • Evans WE , RellingMV: Moving towards individualized medicine with pharmacogenomics.Nature429, 464–468 (2004).
  • Ito T , InoueE, KamataniN: Association test algorithm between a qualitative phenotype and a haplotype or haplotype set using simultaneous estimation of haplotype frequencies, diplotype configurations and diplotype-based penetrances.Genetics168, 2339–2348 (2004).
  • Marra CA , EsdaileJM, AnisAH: Practical pharmacogenetics: the cost effectiveness of screening for thiopurine S-methyltransferase polymorphisms in patients with rheumatological conditions treated with azathioprine.J. Rheumatol.29, 2507–2512 (2002).
  • Oh KT , AnisAH, BaeSC: Pharmacoeconomic analysis of thiopurine methyltransferase polymorphism screening by polymerase chain reaction for treatment with azathioprine in Korea.Rheumatology (Oxford)43, 156–163 (2003).
  • Scott DL : Genotypes and phenotypes: should genetic markers and clinical predictors drive initial treatment decisions in rheumatic diseases?Curr. Opin. Rheumatol.15, 213–218 (2003).
  • Moriguchi M , TeraiC, KanekoH et al.: A novel single-nucleotide polymorphism at the 5′-flanking region of SAA1 associated with risk of type AA amyloidosis secondary to rheumatoid arthritis. Arthritis Rheum.44, 1266–1272 (2001).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.