201
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Pathogenesis of Inflammatory Bowel Disease: Relevance for Novel Therapies

, &
Pages 609-626 | Published online: 10 Nov 2008

Bibliography

  • Loftus CG , LoftusEV Jr, Harmsen WS et al.: Update on the incidence and prevalence of Crohn‘s disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000. Inflamm. Bowel Dis.13 , 254–261 (2007).
  • Gearry RB , RichardsonA, FramptonCM et al.: High incidence of Crohn‘s disease in Canterbury, New Zealand: results of an epidemiologic study.Inflamm. Bowel Dis.12 , 936–943 (2006).
  • Nguyen GC , TuskeyA, DassopoulosT, HarrisML, BrantSR: Rising hospitalization rates for inflammatory bowel disease in the United States between 1998 and 2004.Inflamm. Bowel Dis.13 , 1529–1535 (2007).
  • Faubion WA Jr, Loftus EV Jr, Harmsen WS, Zinsmeister AR, Sandborn WJ: The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology121 , 255–260 (2001).
  • Goldacre MJ , WottonCJ, YeatesD, SeagroattV, JewellD: Cancer in patients with ulcerative colitis, Crohn‘s disease and coeliac disease: record linkage study.Eur. J. Gastroenterol. Hepatol.20 , 297–304 (2008).
  • Sartor RB , MuehlbauerM: Microbial host interactions in IBD: implications for pathogenesis and therapy.Curr. Gastroenterol. Rep.9 , 497–507 (2007).
  • Plevy SE , LandersCJ, PrehnJ et al.: A role for TNF-α and mucosal T helper-1 cytokines in the pathogenesis of Crohn‘s disease.J. Immunol.159 , 6276–6282 (1997).
  • West GA , MatsuuraT, LevineAD, KleinJS, FiocchiC: Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity.Gastroenterology110 , 1683–1695 (1996).
  • Neurath MF , WeigmannB, FinottoS et al.: The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn‘s disease.J. Exp. Med.195 , 1129–1143 (2002).
  • Liang SC , TanXY, LuxenbergDP et al.: Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides.J. Exp. Med.203 , 2271–2279 (2006).
  • Bettelli E , CarrierY, GaoW et al.: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.Nature441 , 235–238 (2006).
  • Yen D , CheungJ, ScheerensH et al.: IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6.J. Clin. Invest.116 , 1310–1316 (2006).
  • Hata K , AndohA, ShimadaM et al.: IL-17 stimulates inflammatory responses via NF-κB and MAP kinase pathways in human colonic myofibroblasts.Am. J. Physiol. Gastrointest. Liver Physiol.282 , G1035–G1044 (2002).
  • Nielsen OH , KirmanI, RudigerN, HendelJ, VainerB: Upregulation of interleukin-12 and -17 in active inflammatory bowel disease.Scand. J. Gastroenterol.38 , 180–185 (2003).
  • Kullberg MC , JankovicD, FengCG et al.: IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis.J. Exp. Med.203 , 2485–2494 (2006).
  • Neurath MF , FussI, KelsallBL, PreskyDH, WaegellW, StroberW: Experimental granulomatous colitis in mice is abrogated by induction of TGF-β-mediated oral tolerance.J. Exp. Med.183 , 2605–2616 (1996).
  • Mannon PJ , FussIJ, MayerL et al.: Anti-interleukin-12 antibody for active Crohn‘s disease.N. Engl. J. Med.351 , 2069–2079 (2004).
  • Cua DJ , SherlockJ, ChenY et al.: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.Nature421 , 744–748 (2003).
  • Duerr RH , TaylorKD, BrantSR et al.: A genome-wide association study identifies IL23R as an inflammatory bowel disease gene.Science314 , 1461–1463 (2006).
  • Bamias G , MishinaM, NyceM et al.: Role of TL1A and its receptor DR3 in two models of chronic murine ileitis.Proc. Natl Acad. Sci. USA103 , 8441–8446 (2006).
  • Bamias G , MartinC 3rd, Marini M et al.: Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J. Immunol.171 , 4868–4874 (2003).
  • Prehn JL , MehdizadehS, LandersCJ et al.: Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-γ, in mucosal inflammation.Clin. Immunol.112 , 66–77 (2004).
  • Tremelling M , BerzuiniC, MasseyD et al.: Contribution of TNFSF15 gene variants to Crohn‘s disease susceptibility confirmed in UK population.Inflamm. Bowel Dis.14(6) , 733–737 (2008).
  • Yamazaki K , McGovernD, RagoussisJ et al.: Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn‘s disease.Hum. Mol. Genet.14 , 3499–3506 (2005).
  • Rogler G , BrandK, VoglD et al.: Nuclear factor κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa.Gastroenterology115 , 357–369 (1998).
  • Nenci A , BeckerC, WullaertA et al.: Epithelial NEMO links innate immunity to chronic intestinal inflammation.Nature446 , 557–561 (2007).
  • Waetzig GH , SeegertD, RosenstielP, NikolausS, SchreiberS: p38 mitogen-activated protein kinase is activated and linked to TNF-α signaling in inflammatory bowel disease.J. Immunol.168 , 5342–5351 (2002).
  • Schreiber S , FeaganB, D‘HaensG et al.: Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn‘s disease: a randomized, double-blind, placebo-controlled trial.Clin. Gastroenterol. Hepatol.4 , 325–334 (2006).
  • Akira S , UematsuS, TakeuchiO: Pathogen recognition and innate immunity.Cell124 , 783–801 (2006).
  • Marks DJ , HarbordMW, MacAllisterR et al.: Defective acute inflammation in Crohn‘s disease: a clinical investigation.Lancet367 , 668–678 (2006).
  • Cario E , BrownD, McKeeM, Lynch-DevaneyK, GerkenG, PodolskyDK: Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium.Am. J. Pathol.160 , 165–173 (2002).
  • Cario E : Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2.Gut54 , 1182–1193 (2005).
  • Maaser C , HeidemannJ, von Eiff C et al.: Human intestinal microvascular endothelial cells express Toll-like receptor 5: a binding partner for bacterial flagellin. J. Immunol.172 , 5056–5062 (2004).
  • Chaudhary PM , FergusonC, NguyenV et al.: Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans.Blood91 , 4020–4027 (1998).
  • Rad R , BrennerL, KrugA et al.: Toll-like receptor-dependent activation of antigen-presenting cells affects adaptive immunity to Helicobacter pylori.Gastroenterology133 , 150–163 E3 (2007).
  • Ehlers M , RavetchJV: Opposing effects of Toll-like receptor stimulation induce autoimmunity or tolerance.Trends Immunol.28 , 74–79 (2007).
  • Girardin SE , BonecaIG, VialaJ et al.: Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection.J. Biol. Chem.278 , 8869–8872 (2003).
  • Girardin SE , BonecaIG, CarneiroLA et al.: Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan.Science300 , 1584–1587 (2003).
  • Martinon F , TschoppJ: Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases.Cell117 , 561–574 (2004).
  • Takahashi Y , IsuzugawaK, MuraseY et al.: Up-regulation of NOD1 and NOD2 through TLR4 and TNF-α in LPS-treated murine macrophages.J. Vet. Med. Sci.68 , 471–478 (2006).
  • Watanabe T , KitaniA, MurrayPJ, StroberW: NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses.Nat. Immunol.5 , 800–808 (2004).
  • Bonen DK , OguraY, NicolaeDL et al.: Crohn‘s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan.Gastroenterology124 , 140–146 (2003).
  • Kobayashi KS , ChamaillardM, OguraY et al.: Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract.Science307 , 731–734 (2005).
  • Netea MG , FerwerdaG, De Jong DJ et al.: The frameshift mutation in Nod2 results in unresponsiveness not only to Nod2- but also Nod1-activating peptidoglycan agonists. J. Biol. Chem.280 , 35859–35867 (2005).
  • Maeda S , HsuLC, LiuH et al.: Nod2 mutation in Crohn‘s disease potentiates NF-κB activity and IL-1β processing.Science307 , 734–738 (2005).
  • Ganz T : Defensins: antimicrobial peptides of innate immunity.Nat. Rev. Immunol.3 , 710–720 (2003).
  • Jones DE , BevinsCL: Paneth cells of the human small intestine express an antimicrobial peptide gene.J. Biol. Chem.267 , 23216–23225 (1992).
  • Zhao C , WangI, LehrerRI: Widespread expression of β-defensin hBD-1 in human secretory glands and epithelial cells.FEBS Lett.396 , 319–322 (1996).
  • Nagaoka I , HirotaS, YomogidaS, OhwadaA, HirataM: Synergistic actions of antibacterial neutrophil defensins and cathelicidins.Inflamm. Res.49 , 73–79 (2000).
  • Grigat J , SoruriA, ForssmannU, RiggertJ, ZwirnerJ: Chemoattraction of macrophages, lymphocytes T, and mast cells is evolutionarily conserved within the human α-defensin family.J. Immunol.179 , 3958–3965 (2007).
  • Soruri A , GrigatJ, ForssmannU, RiggertJ, ZwirnerJ: β-Defensins chemoattract macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved.Eur. J. Immunol.37 , 2474–2486 (2007).
  • Wehkamp J , HarderJ, WeichenthalM et al.: NOD2 (CARD15) mutations in Crohn‘s disease are associated with diminished mucosal α-defensin expression.Gut53 , 1658–1664 (2004).
  • Swidsinski A , LadhoffA, PernthalerA et al.: Mucosal flora in inflammatory bowel disease.Gastroenterology122 , 44–54 (2002).
  • Wehkamp J , SchmidM, FellermannK, StangeEF: Defensin deficiency, intestinal microbes, and the clinical phenotypes of Crohn‘s disease.J. Leukoc. Biol.77 , 460–465 (2005).
  • Bernstein CN , RawsthorneP, CheangM, BlanchardJF: A population-based case control study of potential risk factors for IBD.Am. J. Gastroenterol.101 , 993–1002 (2006).
  • Henriksen M , JahnsenJ, LygrenI, VatnMH, MoumB: Are there any differences in phenotype or disease course between familial and sporadic cases of inflammatory bowel disease? Results of a population-based follow-up study.Am. J. Gastroenterol.102 , 1955–1963 (2007).
  • Spehlmann ME , BegunAZ, BurghardtJ, LepageP, RaedlerA, SchreiberS: Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study.Inflamm. Bowel Dis.14(7) , 968–976 (2008).
  • Ogura Y , BonenDK, InoharaN et al.: A frameshift mutation in NOD2 associated with susceptibility to Crohn‘s disease.Nature411 , 603–606 (2001).
  • Hugot JP , ChamaillardM, ZoualiH et al.: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn‘s disease.Nature411 , 599–603 (2001).
  • Annese V , LombardiG, PerriF et al.: Variants of CARD15 are associated with an aggressive clinical course of Crohn‘s disease – an IG-IBD study.Am. J. Gastroenterol.100 , 84–92 (2005).
  • Cuthbert AP , FisherSA, MirzaMM et al.: The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease.Gastroenterology122 , 867–874 (2002).
  • Mascheretti S , HampeJ, CroucherPJ et al.: Response to infliximab treatment in Crohn‘s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials.Pharmacogenetics12 , 509–515 (2002).
  • Parkes M , BarmadaMM, SatsangiJ, WeeksDE, JewellDP, DuerrRH: The IBD2 locus shows linkage heterogeneity between ulcerative colitis and Crohn disease.Am. J. Hum. Genet.67 , 1605–1610 (2000).
  • van Heel DA , FisherSA, KirbyA, DalyMJ, RiouxJD, LewisCM: Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs.Hum. Mol. Genet.13 , 763–770 (2004).
  • Stokkers PC , ReitsmaPH, TytgatGN, van Deventer SJ: HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut45 , 395–401 (1999).
  • Silverberg MS , MireaL, BullSB et al.: A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease.Inflamm. Bowel Dis.9 , 1–9 (2003).
  • Vermeire S , RutgeertsP, van Steen K et al.: Genome wide scan in a Flemish inflammatory bowel disease population: support for the IBD4 locus, population heterogeneity, and epistasis. Gut53 , 980–986 (2004).
  • Lamhonwah AM , SkaugJ, SchererSW, TeinI: A third human carnitine/organic cation transporter (OCTN3) as a candidate for the 5q31 Crohn‘s disease locus (IBD5).Biochem. Biophys. Res. Commun.301 , 98–101 (2003).
  • Stoll M , CorneliussenB, CostelloCM et al.: Genetic variation in DLG5 is associated with inflammatory bowel disease.Nat. Genet.36 , 476–480 (2004).
  • Torok HP , GlasJ, TonenchiL et al.: Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn‘s disease.Gut54 , 1421–1427 (2005).
  • Vermeire S , PierikM, HlavatyT et al.: Association of organic cation transporter risk haplotype with perianal penetrating Crohn‘s disease but not with susceptibility to IBD.Gastroenterology129 , 1845–1853 (2005).
  • Low JH , WilliamsFA, YangX et al.: Inflammatory bowel disease is linked to 19p13 and associated with ICAM-1.Inflamm. Bowel Dis.10 , 173–181 (2004).
  • Marek A , BrodzickiJ, LiberekA, KorzonM: TGF-β (transforming growth factor-β) in chronic inflammatory conditions – a new diagnostic and prognostic marker?Med. Sci. Monit.8 , RA145–RA151 (2002).
  • Kanazawa S , TsunodaT, OnumaE, MajimaT, KagiyamaM, KikuchiK: VEGF, basic-FGF, and TGF-β in Crohn‘s disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation.Am. J. Gastroenterol.96 , 822–828 (2001).
  • Hampe J , FrenzelH, MirzaMM et al.: Evidence for a NOD2-independent susceptibility locus for inflammatory bowel disease on chromosome 16p.Proc. Natl Acad. Sci. USA99 , 321–326 (2002).
  • Brant SR , ShugartYY: Inflammatory bowel disease gene hunting by linkage analysis: rationale, methodology, and present status of the field.Inflamm. Bowel Dis.10 , 300–311 (2004).
  • Hampe J , LynchNJ, DanielsS et al.: Fine mapping of the chromosome 3p susceptibility locus in inflammatory bowel disease.Gut48 , 191–197 (2001).
  • De Jager PL , FranchimontD, WaliszewskaA et al.: The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases.Genes Immun.8 , 387–397 (2007).
  • Cummings JR , AhmadT, GeremiaA et al.: Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype.Inflamm. Bowel Dis.13 , 1063–1068 (2007).
  • Baldassano RN , BradfieldJP, MonosDS et al.: Association of variants of the interleukin-23 receptor gene with susceptibility to pediatric Crohn‘s disease.Clin. Gastroenterol. Hepatol.5 , 972–976 (2007).
  • Hampe J , FrankeA, RosenstielP et al.: A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1.Nat. Genet.39 , 207–211 (2007).
  • Parkes M , BarrettJC, PrescottNJ et al.: Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn‘s disease susceptibility.Nat. Genet.39 , 830–832 (2007).
  • Fisher SA , TremellingM, AndersonCA et al.: Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn‘s disease.Nat. Genet.40 , 710–712 (2008).
  • Ho GT , SoranzoN, NimmoER, TenesaA, GoldsteinDB, SatsangiJ: ABCB1/MDR1 gene determines susceptibility and phenotype in ulcerative colitis: discrimination of critical variants using a gene-wide haplotype tagging approach.Hum. Mol. Genet.15 , 797–805 (2006).
  • Farrell RJ , MurphyA, LongA et al.: High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy.Gastroenterology118 , 279–288 (2000).
  • Libioulle C , LouisE, HansoulS et al.: Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4.PLoS Genet.3 , E58 (2007).
  • Kabashima K , SajiT, MurataT et al.: The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut.J. Clin. Invest.109 , 883–893 (2002).
  • Sousa S , LecuitM, CossartP: Microbial strategies to target, cross or disrupt epithelia.Curr. Opin. Cell Biol.17 , 489–498 (2005).
  • Fagotto F , GumbinerBM: Cell contact-dependent signaling.Dev. Biol.180 , 445–454 (1996).
  • Lehmann J , HuehnJ, de la Rosa M et al.: Expression of the integrin α Eβ 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc. Natl Acad. Sci. USA99 , 13031–13036 (2002).
  • Madara JL : Regulation of the movement of solutes across tight junctions.Annu. Rev. Physiol.60 , 143–159 (1998).
  • Turner JR : Show me the pathway! Regulation of paracellular permeability by Na(+)-glucose cotransport.Adv. Drug Deliv. Rev.41 , 265–281 (2000).
  • Carrigan SO , PinkDB, StadnykAW: Neutrophil transepithelial migration in response to the chemoattractant fMLP but not C5a is phospholipase D-dependent and related to the use of CD11b/CD18.J. Leukoc. Biol.82 , 1575–1584 (2007).
  • Mrsny RJ , GewirtzAT, SiccardiD et al.: Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia.Proc. Natl Acad. Sci. USA101 , 7421–7426 (2004).
  • Kucharzik T , WalshSV, ChenJ, ParkosCA, NusratA: Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins.Am. J. Pathol.159 , 2001–2009 (2001).
  • Grbic DM , DegagneE, LangloisC, DupuisAA, GendronFP: Intestinal inflammation increases the expression of the P2Y6 receptor on epithelial cells and the release of CXC chemokine ligand 8 by UDP.J. Immunol.180 , 2659–2668 (2008).
  • Li H , ChehadeM, LiuW, XiongH, MayerL, BerinMC: Allergen-IgE complexes trigger CD23-dependent CCL20 release from human intestinal epithelial cells.Gastroenterology133 , 1905–1915 (2007).
  • Perera L , ShaoL, PatelA et al.: Expression of nonclassical class I molecules by intestinal epithelial cells.Inflamm. Bowel Dis.13 , 298–307 (2007).
  • Singh JC , CruickshankSM, NewtonDJ et al.: Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis.Am. J. Physiol. Gastrointest. Liver Physiol.288 , G514–G524 (2005).
  • Dignass AU : Mechanisms and modulation of intestinal epithelial repair.Inflamm. Bowel Dis.7 , 68–77 (2001).
  • Irvine EJ , MarshallJK: Increased intestinal permeability precedes the onset of Crohn‘s disease in a subject with familial risk.Gastroenterology119 , 1740–1744 (2000).
  • Schmitz H , BarmeyerC, FrommM et al.: Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis.Gastroenterology116 , 301–309 (1999).
  • Heidemann J , DomschkeW, KucharzikT, MaaserC: Intestinal microvascular endothelium and innate immunity in inflammatory bowel disease: a second line of defense?Infect. Immun.74 , 5425–5432 (2006).
  • Gill SR , PopM, DeboyRT et al.: Metagenomic analysis of the human distal gut microbiome.Science312 , 1355–1359 (2006).
  • Conte MP , SchippaS, ZamboniI et al.: Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease.Gut55 , 1760–1767 (2006).
  • Ley RE , TurnbaughPJ, KleinS, GordonJI: Microbial ecology: human gut microbes associated with obesity.Nature444 , 1022–1023 (2006).
  • Galvez J , Rodriguez-CabezasME, ZarzueloA: Effects of dietary fiber on inflammatory bowel disease.Mol. Nutr. Food Res.49 , 601–608 (2005).
  • Wachtershauser A , SteinJ: Rationale for the luminal provision of butyrate in intestinal diseases.Eur. J. Nutr.39 , 164–171 (2000).
  • Ruiz PA , ShkodaA, KimSC, SartorRB, HallerD: IL-10 gene-deficient mice lack TGF-β/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation.Ann. NY Acad. Sci.1072 , 389–394 (2006).
  • Madsen KL , MalfairD, GrayD, DoyleJS, JewellLD, FedorakRN: Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora.Inflamm. Bowel Dis.5 , 262–270 (1999).
  • Kitajima S , MorimotoM, SagaraE, ShimizuC, IkedaY: Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice.Exp. Anim.50 , 387–395 (2001).
  • Lee J , MoJH, KatakuraK et al.: Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells.Nat. Cell Biol.8 , 1327–1336 (2006).
  • Hoentjen F , SartorRB, OzakiM, JobinC: STAT3 regulates NF-κB recruitment to the IL-12p40 promoter in dendritic cells.Blood105 , 689–696 (2005).
  • Darfeuille-Michaud A , NeutC, BarnichN et al.: Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn‘s disease.Gastroenterology115 , 1405–1413 (1998).
  • Greenstein RJ : Is Crohn‘s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne‘s disease.Lancet Infect. Dis.3 , 507–514 (2003).
  • Lamps LW , MadhusudhanKT, HavensJM et al.: Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn‘s disease.Am. J. Surg. Pathol.27 , 220–227 (2003).
  • Sechi LA , ScanuAM, MolicottiP et al.: Detection and isolation of Mycobacterium avium subspecies paratuberculosis from intestinal mucosal biopsies of patients with and without Crohn‘s disease in Sardinia.Am. J. Gastroenterol.100 , 1529–1536 (2005).
  • Selby W , PavliP, CrottyB et al.: Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn‘s disease.Gastroenterology132 , 2313–2319 (2007).
  • Rath HC , SchultzM, FreitagR et al.: Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice.Infect. Immun.69 , 2277–2285 (2001).
  • Kruis W , FricP, PokrotnieksJ et al.: Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine.Gut53 , 1617–1623 (2004).
  • Guzy C , PaclikD, SchirbelA, SonnenbornU, WiedenmannB, SturmA: The probiotic Escherichia coli strain Nissle 1917 induces γδ-T cell apoptosis via caspase- and FasL-dependent pathways.Int. Immunol.20(7) , 829–840 (2008).
  • Boudeau J , GlasserAL, JulienS, ColombelJF, Darfeuille-MichaudA: Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn‘s disease.Aliment Pharmacol. Ther.18 , 45–56 (2003).
  • Sturm A , RillingK, BaumgartDC et al.: Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling.Infect. Immun.73 , 1452–1465 (2005).
  • Baumgart M , DoganB, RishniwM et al.: Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn‘s disease involving the ileum.Isme J.1 , 403–418 (2007).
  • Swidsinski A , Loening-BauckeV, VaneechoutteM, DoerffelY: Active Crohn‘s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora.Inflamm. Bowel Dis.14 , 147–161 (2008).
  • Simms L , SteinhartAH: Budesonide for maintenance of remission in Crohn‘s disease.Cochrane Database Syst. Rev.CD002913 (2001).
  • Hanauer SB , StrombergU: Oral pentasa in the treatment of active Crohn‘s disease: a meta-analysis of double-blind, placebo-controlled trials.Clin. Gastroenterol. Hepatol.2 , 379–388 (2004).
  • Candy S , WrightJ, GerberM, AdamsG, GerigM, GoodmanR: A controlled double blind study of azathioprine in the management of Crohn‘s disease.Gut37 , 674–678 (1995).
  • Pearson DC , MayGR, FickGH, SutherlandLR: Azathioprine and 6-mercaptopurine in Crohn disease. A meta-analysis.Ann. Intern. Med.123 , 132–142 (1995).
  • Francella A , DyanA, BodianC, RubinP, ChapmanM, PresentDH: The safety of 6-mercaptopurine for childbearing patients with inflammatory bowel disease: a retrospective cohort study.Gastroenterology124 , 9–17 (2003).
  • Kandiel A , FraserAG, KorelitzBI, BrensingerC, LewisJD: Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine.Gut54 , 1121–1125 (2005).
  • Lewis JD , SchwartzJS, LichtensteinGR: Azathioprine for maintenance of remission in Crohn‘s disease: benefits outweigh the risk of lymphoma.Gastroenterology118 , 1018–1024 (2000).
  • Feagan BG , FedorakRN, IrvineEJ et al.: A comparison of methotrexate with placebo for the maintenance of remission in Crohn‘s disease. North American Crohn‘s Study Group Investigators.N. Engl. J. Med.342 , 1627–1632 (2000).
  • Feagan BG , RochonJ, FedorakRN et al.: Methotrexate for the treatment of Crohn‘s disease. The North American Crohn‘s Study Group Investigators.N. Engl. J. Med.332 , 292–297 (1995).
  • Uhlen S , BelbouabR, NarebskiK et al.: Efficacy of methotrexate in pediatric Crohn‘s disease: a French multicenter study.Inflamm. Bowel Dis.12 , 1053–1057 (2006).
  • Fraser AG : Methotrexate: first-line or second-line immunomodulator?Eur. J. Gastroenterol. Hepatol.15 , 225–231 (2003).
  • Chande N , MacDonaldJK, McDonaldJW: Methotrexate for induction of remission in ulcerative colitis.Cochrane Database Syst. Rev.CD006618 (2007).
  • Travis SP , StangeEF, LemannM et al.: European evidence based consensus on the diagnosis and management of Crohn‘s disease: current management.Gut55(Suppl. 1) , I16–I35 (2006).
  • Heetun ZS , ByrnesC, NearyP, O‘MorainC: Review article: Reproduction in the patient with inflammatory bowel disease.Aliment Pharmacol. Ther.26 , 513–533 (2007).
  • Hanauer SB , FeaganBG, LichtensteinGR et al.: Maintenance infliximab for Crohn‘s disease: the ACCENT I randomised trial.Lancet359 , 1541–1549 (2002).
  • Rutgeerts P , SandbornWJ, FeaganBG et al.: Infliximab for induction and maintenance therapy for ulcerative colitis.N. Engl. J. Med.353 , 2462–2476 (2005).
  • Lugering A , LebiedzP, KochS, KucharzikT: Apoptosis as a therapeutic tool in IBD?Ann. NY Acad. Sci.1072 , 62–77 (2006).
  • Lugering A , SchmidtM, LugeringN, PauelsHG, DomschkeW, KucharzikT: Infliximab induces apoptosis in monocytes from patients with chronic active Crohn‘s disease by using a caspase-dependent pathway.Gastroenterology121 , 1145–1157 (2001).
  • van den Brande JM , BraatH, van den Brink GR et al.: Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn‘s disease. Gastroenterology124 , 1774–1785 (2003).
  • ten Hove T , van Montfrans C, Peppelenbosch MP, van Deventer SJ: Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn‘s disease. Gut50 , 206–211 (2002).
  • Ehrenstein MR , EvansJG, SinghA et al.: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy.J. Exp. Med.200 , 277–285 (2004).
  • Suenaert P , BulteelV, LemmensL et al.: Anti-tumor necrosis factor treatment restores the gut barrier in Crohn‘s disease.Am. J. Gastroenterol.97 , 2000–2004 (2002).
  • Schreiber S , Khaliq-KareemiM, LawranceIC et al.: Maintenance therapy with certolizumab pegol for Crohn‘s disease.N. Engl. J. Med.357 , 239–250 (2007).
  • Nesbitt A , FossatiG, BerginM et al.: Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor α agents.Inflamm. Bowel Dis.13 , 1323–1332 (2007).
  • Colombel JF , SandbornWJ, RutgeertsP et al.: Adalimumab for maintenance of clinical response and remission in patients with Crohn‘s disease: the CHARM trial.Gastroenterology132 , 52–65 (2007).
  • Sandborn WJ : Strategies for targeting tumour necrosis factor in IBD.Best Pract. Res. Clin. Gastroenterol.17 , 105–117 (2003).
  • Sandborn WJ , HanauerSB, RutgeertsP et al.: Adalimumab for maintenance treatment of Crohn‘s disease: results of the CLASSIC II trial.Gut56 , 1232–1239 (2007).
  • Sandborn WJ , RutgeertsP, EnnsR et al.: Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial.Ann. Intern. Med.146 , 829–838 (2007).
  • Targan SR , FeaganBG, FedorakRN et al.: Natalizumab for the treatment of active Crohn‘s disease: results of the ENCORE Trial.Gastroenterology132 , 1672–1683 (2007).
  • Honey K : The comeback kid: TYSABRI now FDA approved for Crohn disease.J. Clin. Invest.118 , 825–826 (2008).
  • Baumgart DC , PintofflJP, SturmA, WiedenmannB, DignassAU: Tacrolimus is safe and effective in patients with severe steroid-refractory or steroid-dependent inflammatory bowel disease – a long-term follow-up.Am. J. Gastroenterol.101 , 1048–1056 (2006).
  • Rembacken BJ , SnellingAM, HawkeyPM, ChalmersDM, AxonAT: Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial.Lancet354 , 635–639 (1999).
  • Gionchetti P , RizzelloF, VenturiA et al.: Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial.Gastroenterology119 , 305–309 (2000).
  • Gionchetti P , RizzelloF, HelwigU et al.: Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial.Gastroenterology124 , 1202–1209 (2003).
  • Dejaco C , HarrerM, WaldhoerT, MiehslerW, VogelsangH, ReinischW: Antibiotics and azathioprine for the treatment of perianal fistulas in Crohn‘s disease.Aliment Pharmacol. Ther.18 , 1113–1120 (2003).
  • Steinhart AH , FeaganBG, WongCJ et al.: Combined budesonide and antibiotic therapy for active Crohn‘s disease: a randomized controlled trial.Gastroenterology123 , 33–40 (2002).
  • Greenbloom SL , SteinhartAH, GreenbergGR: Combination ciprofloxacin and metronidazole for active Crohn‘s disease.Can. J. Gastroenterol.12 , 53–56 (1998).
  • Prantera C , LochsH, CampieriM et al.: Antibiotic treatment of Crohn‘s disease: results of a multicentre, double blind, randomized, placebo-controlled trial with rifaximin.Aliment Pharmacol. Ther.23 , 1117–1125 (2006).
  • Angelberger S , ReinischW, DejacoC et al.: NOD2/CARD15 gene variants are linked to failure of antibiotic treatment in perianal fistulating Crohn‘s disease.Am. J. Gastroenterol.103 , 1197–1202 (2008).
  • Korzenik JR , DieckgraefeBK, ValentineJF, HausmanDF, GilbertMJ: Sargramostim for active Crohn‘s disease.N. Engl. J. Med.352 , 2193–2201 (2005).
  • Feagan BG , AndersonF, Radford-SmithGL: Efficacy and safety of sargramostim in moderate to severe Crohn‘s disease: results of N.O.V.E.L. 4, a Phase III multicenter study.Gastroenterology132 , 737 (2007).
  • Plevy S , SalzbergB, Van Assche G et al.: A Phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology133 , 1414–1422 (2007).
  • Braat H , RottiersP, HommesDW et al.: A Phase I trial with transgenic bacteria expressing interleukin-10 in Crohn‘s disease.Clin. Gastroenterol. Hepatol.4 , 754–759 (2006).
  • Steidler L , NeirynckS, HuyghebaertN et al.: Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10.Nat. Biotechnol.21 , 785–789 (2003).
  • Fedorak RN , GanglA, ElsonCO et al.: Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn‘s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group.Gastroenterology119 , 1473–1482 (2000).
  • Schreiber S , FedorakRN, NielsenOH et al.: Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn‘s disease. Crohn‘s Disease IL-10 Cooperative Study Group.Gastroenterology119 , 1461–1472 (2000).
  • Potocnik U , FerkoljI, GlavacD, DeanM: Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis.Genes Immun.5 , 530–539 (2004).
  • Hlavaty T , PierikM, HenckaertsL et al.: Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn‘s disease.Aliment Pharmacol. Ther.22 , 613–626 (2005).
  • Ainsworth MA , BendtzenK, BrynskovJ: Tumor necrosis factor-α binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn‘s disease.Am. J. Gastroenterol.103 , 944–948 (2008).
  • Landers CJ , CohavyO, MisraR et al.: Selected loss of tolerance evidenced by Crohn‘s disease-associated immune responses to auto- and microbial antigens.Gastroenterology123 , 689–699 (2002).
  • Zholudev A , ZurakowskiD, YoungW, LeichtnerA, BousvarosA: Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn‘s disease and ulcerative colitis: diagnostic value and correlation with disease phenotype.Am. J. Gastroenterol.99 , 2235–2241 (2004).
  • Desir B , AmreDK, LuSE et al.: Utility of serum antibodies in determining clinical course in pediatric Crohn‘s disease.Clin. Gastroenterol. Hepatol.2 , 139–146 (2004).
  • Dubinsky MC , LinYC, DutridgeD et al.: Serum immune responses predict rapid disease progression among children with Crohn‘s disease: immune responses predict disease progression.Am. J. Gastroenterol.101 , 360–367 (2006).
  • Beaugerie L , SeksikP, Nion-LarmurierI, GendreJP, CosnesJ: Predictors of Crohn‘s disease.Gastroenterology130(3) , 650–656 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.