916
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Large Animal Models are Critical for Rationally Advancing Regenerative Therapies

, &
Pages 405-413 | Published online: 18 Jul 2006

Bibliography

  • Redmond DE Jr: Cellular replacement therapy for Parkinson's disease – where we are today? Neuroscientist8(5), 457–488 (2002).
  • Lindvall O , RehncronaS, BrundinP et al.: Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson‘s disease: a detailed account of methodology and a 6-month follow-up. Arch. Neurol.46, 615–631 (1989).
  • Bacopoulos NG , MaasJW, HattoxSE, Roth RH: Regional distribution of dopamine metabolites in human and primate brain. Comm. Psychopharmacol.2, 281–286 (1978).
  • Felten DL , SladekJRJ: Monoamine distribution in primate brain: V. monoamine nuclei: anatomy, pathways and local organization.Brain Res. Bull.10, 171–284 (1983).
  • Waddington JL , O‘BoyleKM: Drugs acting on brain dopamine receptors: a conceptual reevaluation five years after the first selective D1 antagonist.Pharmacol. Ther.43, 1–52 (1989).
  • Haycock JW : Four forms of tyrosine hydroxylase are present in human adrenal medulla.J. Neurochem.56, 2139–2142 (1991).
  • Nagatsu T : Genes for human catecholamine-synthesizing enzymes.Neurosci. Res.12, 315–345 (1991).
  • Steece-Collier K , MariesE, KordowerJH: Etiology of Parkinson's disease: genetics and environment revisited.Proc. Natl Acad. Sci. USA99(22), 13972–1394 (2002).
  • Collier TJ , Steece-CollierK, KordowerJH: Primate models of Parkinson's disease.Exp. Neurol.183(2), 258–262 (2003).
  • Emborg ME : Evaluation of animal models of Parkinson‘s disease for neuroprotective strategies.J. Neurosci. Methods139(2), 121–143 (2004).
  • Taylor JR , RothRH, SladekJR Jr, Redmond DE Jr: Cognitive and motor deficits in the performance of an object retrieval task with a barrier-detour in monkeys (Cercopithecus aethiops sabaeus) treated with MPTP: long-term performance and effect of transparency of the barrier. Behav. Neurosci.104(4), 564–576 (1990).
  • Taylor JR , ElsworthJD, RothRH, Sladek JR Jr, Redmond DE Jr: Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain113(Pt 3), 617–637 (1990).
  • Taylor JR , ElsworthJD, RothRH, Collier TJ, Sladek JR, Redmond DE Jr: Improvements in MPTP-induced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. In: Progress in brain research. Richards SJ, Dunnett SB (Eds). Elsevier, Amsterdam, The Netherlands 543–559 (1990).
  • Elsworth JD , LawrenceMS, RothRH et al.: D1 and D2 dopamine receptors independently regulate spontaneous blink rate in the vervet monkey. J. Pharmacol. Exp. Ther.259, 595–600 (1991).
  • Taylor JR , ElsworthJD, RothRH, Sladek JR Jr, Collier TJ, Redmond DE Jr: Grafting of fetal substantia nigra to striatum reverses behavioral deficits induced by MPTP in primates: a comparison with other types of grafts as controls. Exp. Brain Res.85(2), 335–348 (1991).
  • Kordower JH , LiuYT, WinnS, Emerich DF: Encapsulated PC12 cell transplants into hemiparkinsonian monkeys: a behavioral, neuroanatomical, and neurochemical analysis. Cell Transplant.4(2), 155–171 (1995).
  • Vodicka P , SmetanaK Jr, Dvorankova B et al.: The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci.1049, 161–171 (2005).
  • Bollen P , EllegaardL: Developments in breeding Göttingen minipigs. In:Advances in Swine in Biomedical Research. Tumbleson ME, Schook LB (Eds). Plenum Press, NY, USA 59–66 (1996).
  • Bollen P , EllegaardL: The Göttingen minipig in pharmacology and toxicology.Pharmacol. Toxicol.80, 3–4 (1997).
  • Brown D , TerrisJ: Swine in physiological and pathophysiological research. In:Advances in Swine in Biomedical Research. Tumbleson ME, Schook LB (Eds). Plenum Press, NY, USA 5–6 (1996).
  • Murakami T , HitomiS, OhtsukaA, Taguchi T, Fujita T: Pancreatic insulo-acinar portal systems in humans, rats, and some other mammals: Scanning electron microscopy of vascular casts. Microsc. Res. Tech.37, 478–488 (1997).
  • Larsen MO , RolinB: Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research.ILAR J.45(3), 303–313 (2004).
  • Markussen J , HavelundS, KurtzhalsP et al.: Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia39, 281–288 (1996).
  • Pieber TR , PlankJ, GörzerE et al.: Duration of action, pharmacodynamic profile and between-subject variability of insulin determine subjects with type 1 diabetes. Diabetologia45, A257 (2002).
  • Miller ER , UllreyDE: The pig as a model for human nutrition.Annu. Rev. Nutr.7, 361–382 (1987).
  • Broughton DL , TaylorR: Review: deterioration of glucose tolerance with age: the role of insulin resistance.Age Ageing20, 221–225 (1991).
  • Rosenthal M , DoberneL, GreenfieldM, WidstromA, ReavenGM: Effect of age on glucose tolerance, insulin secretion, and in vivo insulin action.J. Am. Geriatr. Soc.30, 562–567 (1982).
  • Marshall M , SprandelU, ZollnerN: Streptozotocin diabetes in a miniature pig.Res. Exp. Med.165, 61–65 (1975).
  • Marshall M : Induction of chronic diabetes by streptozotocin in the miniature pig.Res. Exp. Med.175, 187–196 (1979).
  • Gabel H , Bitter-SuermannH, Henriksson C, Save-Soderbergh J, Lundholm K, Brynger H:Streptozotocin diabetes in juvenile pigs. Evaluation of an experimental model. Horm. Metab. Res.17, 275–280 (1985).
  • Wilson JD , DhallDP, SimeonovicCJ, LaffertyKJ: Induction and management of diabetes mellitus in the pig.Aust. J. Exp. Biol. Med. Sci.64, 489–500 (1986).
  • Kjems LL , KirbyBM, WelshEM et al.: Decrease in ??cell mass leads to impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and relative hyperglucagonemia in the minipig. Diabetes50, 2001–2012 (2001).
  • Mellert J , HoptUT, HeringBJ, BretzelRG, FederlinK: Influence of islet mass and purity on reversibility of diabetes in pancreatectomized pigs.Transplant Proc.23, 1687–1689 (1991).
  • Morsiani E , FogliL, LanzaG, LebowLT, DemetriouAA, RozgaJ: Long-term insulin independence following repeated islet transplantation in totally pancreatectomized diabetic pigs.Cell Transplant.11, 55–66 (2001).
  • Kin T , IwataH, AomatsuY et al.: Xenotransplantation of pig islets in diabetic dogs with use of a microcapsule composed of agarose and polystyrene sulfonic acid mixed gel. Pancreas25, 94–100 (2002).
  • Buhler L , DengS, O‘NeilJ et al.: Adult porcine islet transplantation in baboons treated with conventional immunosuppression or a nonmyeloablative regimen and CD154 blockade. Xenotransplantation9, 3–13 (2002).
  • Cantarovich D , BlanchoG, PotironN et al.: Rapid failure of pig islet transplantation in non human primates. Xenotransplantation9, 25–35 (2002).
  • Groth CG , KorsgrenO, TibellA et al.: Transplantation of porcine fetal pancreas to diabetic patients. Lancet344, 1402–1404 (1994).
  • Elliott RB , EscobarL, GarkavenkoO et al. No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant.9, 895–901 (2000).
  • Groth CG , TibellA, WennbergL et al.: Clinical aspects and perspectives in islet xenotransplantation. J. Hepatobil. Pancreat. Surg.7, 364–369 (2000).
  • Shapiro AMJ , LakeyJRT, RyanEA, et al.: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med.343, 230–238 (2000).
  • Sachs D , LeightHG, ConeJ, SchwarzS, StuartL, RosenbergS: Transplantation in miniature swine. I. Fixation of the major histocompatability complex.Transplantation22, 559–567 (1976).
  • Sachs DH : MHC-homozygous miniature swine. In:Swine as Models in Biomedical Research. Swindel MM, Moody DC, Philips LD (Eds). Iowa State University Press, IA, USA 3–15 (1992).
  • Mezrich JD , HallerGW, ArnJS, HouserSL, MadsenJC, SachsDH. Histocompatible miniature swine: an inbred large-animal model. Transplantation, 75(6), 904–907 (2003).
  • Allan JS , WainJC, SchwarzeML et al.: Modeling chronic lung allograft rejection in miniature swine.Transplantation73(3), 447–453 (2002).
  • Gollackner B , DorFJ, KnosallaC et al.: Spleen transplantation in miniature swine: surgical technique and results in major histocompatibility complex-matched donor and recipient pairs. Transplantation75(11), 1799–806 (2003).
  • Kenmochi T , MullenY, MiyamotoM, Stein E: Swine as an allotransplantation model. Vet. Immunol. Immunopathol.43(1–3), 177–183 (1994).
  • Emery DW , SachsDH, LeGuernC: Culture and characterization of hematopoietic progenitor cells from miniature swine.Exp. Hematol.24(8), 927–935 (1996).
  • Tumbleson ME : Brain weight, as a function of age, in miniature swine.Growth37(1), 13–17 (1973).
  • Holloway RL , HeilbronerP: Corpus callosum in sexually dimorphic and nondimorphic primates.Am. J. Phys. Anthropol.87(3), 349–357 (1992).
  • Singer BA , TresserNJ, FrankJA, McFarland HF, Biddison WE: Induction of experimental allergic encephalomyelitis in the NIH minipig. J. Ieuroimmunol.105(1), 7–19 (2000).
  • Matsuyama N , HadanoS, OnoeK et al.: Identification and characterization of the miniature pig Huntington‘s disease gene homolog: evidence for conservation and polymorphism in the CAG triplet repeat. Genomics69(1), 72–85 (2000).
  • Mikkelsen M , MollerA, JensenLH, PedersenA, HarajehiJB, PakkenbergH: MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study.Neurotoxicol. Teratol.21(2), 169–175 (1999).
  • Fink JS , SchumacherJM, ElliasSL et al.: Porcine xenografts in Parkinson‘s disease and Huntington‘s disease patients: preliminary results. Cell Transplant.9(2), 273–278 (2000).
  • Schumacher JM , ElliasSA, PalmerEP et al.: Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology54(5), 1042–1050 (2000).
  • Valdes-Gonzalez RA , DorantesLM, Garibay GN et al.: Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur. J. Endocrinol.153(3), 419–427 (2005).
  • Savitz SI , DinsmoreJ, WuJ, Henderson GV, Stieg P, Caplan LR: Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc. Dis.20(2), 101–107 (2005).
  • Iwanami A , KanekoS, NakamuraM et al.: Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res.80(2), 182–190 (2005).
  • Olson L , SeigerA: Brain tissue transplanted to the anterior chamber of the eye: 1. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons reinnervating the rat iris.Z. Zellforsch. Mikrosk. Anat.135, 175–194 (1972).
  • Olson L , SeigerA: Locus coeruleus: fiber growth regulation in oculo.Med. Biol.54, 142–145 (1976).
  • Bjorklund A , SteneviU, SvendgaardN: Growth of transplanted monoaminergic neurones into the adult hippocampus along the perforant path.Nature262(5571), 787–790 (1976).
  • Stenevi U , BjorklundA, SvendgaardN: Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival.Brain Res.114(1), 1–20 (1976).
  • Hoffer B , SeigerA, FreedmanR, OlsonL, TaylorD: Electrophysiology and cytology of hippocampal formation transplants in anterior chamber of the eye: II. Cholinergic mechanisms.Brain Res.119, 107–132 (1977).
  • Bjorklund A , SteneviU: Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants.Brain Res.177(3), 555–560 (1979).
  • Perlow MJ , FreedWJ, HofferBJ, SeigerA, OlsonL, WyattRJ: Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system.Science204, 643–653 (1979).
  • Backlund EO , GranbergB, HambergerE et al.: Transplantation of adrenal medullary tissue to striatum in parkinsonism: first clinical trials. J. Neurosurg.62, 169–173 (1985).
  • Rehncrona S : A critical review of the current status and possible developments in brain transplantation.Adv. Tech. Stand. Neurosurg.23, 3–46 (1997).
  • Hallett M , LitvanI: Scientific position paper of the Movement Disorder Society evaluation of surgery for Parkinson‘s disease. Task Force on Surgery for Parkinson‘s Disease of the American Academy of Neurology Therapeutic and Technology Assessment Committee.Mov. Disord.15(3), 436–438 (2000).
  • Redmond DE Jr, Roth RH, Sladek JR: MPTP produces classic parkinsonian syndrome in African green monkeys. Neurosci. Abstr.11(1), 166 (1985).
  • Redmond DE Jr, Sladek JR Jr, Roth RH et al.: Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. Lancet1(8490), 1125–1127 (1986).
  • Redmond DE Jr, Sladek JR Jr, Roth RH et al.: Transplants of primate neurons [letter]. Lancet2(8514), 1046 (1986).
  • Redmond DE Jr, Naftolin F, Collier TJ et al.: Cryopreservation, culture, and transplantation of human fetal mesencephalic tissue into monkeys. Science242(4879), 768–771 (1988).
  • Bakay RAE , BarrowDL, FiandacaMS, IuvonePM, SchiffA, CollinsDC: Biochemical and behavioral correction of MPTP Parkinson-like syndrome by fetal cell transplantation.Ann. N. Y. Acad. Sci.495, 623–640 (1987).
  • Sladek JR Jr, Redmond DE Jr, Collier TJ et al.: Transplantation of fetal dopamine neurons in primate brain reverses MPTP induced parkinsonism. Prog Brain Res.71, 309–323 (1987).
  • Sladek JR Jr, Redmond DE Jr, Collier TJ et al.: Fetal dopamine neural grafts: extended reversal of methylphenyltetrahydropyridine-induced parkinsonism in monkeys. Prog Brain Res.78, 497–506 (1988).
  • Brundin P , StreckerRE, WidnerH et al.: Human fetal dopamine neurons grafted in a rat model of Parkinson‘s disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp. Brain Res.70, 192–208 (1988).
  • Lindvall O , RehncronaS, GustaviiB et al.: Fetal dopamine-rich mesencephalic grafts in Parkinson‘s disease. Lancet2, 1483–1484 (1988).
  • Hitchcock ER , KennyBG, HendersonBT, CloughCG, HughesRC, DettaA: A series of experimental surgery for advanced Parkinson‘s disease by fetal mesencephalic transplantation.Acta Neurochirurgica. Suppl. (Wein)52, 54–57 (1991).
  • Madrazo I , LeónV, TorresC et al.: Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson‘s disease. N. Engl. J. Med.318, 51 (1988).
  • Mahowald MB , AreenJ, HofferBJ et al.: Transplantation of neural tissue from fetuses. Science235, 1307–1308 (1987).
  • Hoffer BJ , OlsonL: Ethicalissues in brain-cell transplantation.Trends Neurosci.14, 384–388 (1991).
  • Langston JW , WidnerH, GoetzCG et al.: Core Assessment Program for Intracerebral Transplantations (CAPIT). Mov. Disord.7, 2–13 (1992).
  • Freed CR , GreenePE, BreezeRE et al.: Transplantation of embryonic dopamine neurons for severe Parkinson‘s disease. N. Engl. J. Med.344(10), 710–719 (2001).
  • Hagell P , PicciniP, BjorklundA et al.: Dyskinesias following neural transplantation in Parkinson‘s disease. Nat. Neurosci.5(7), 627–628 (2002).
  • Björklund A , DunnetSB, SteneviU, Lewis ME, Iverson SD: Reinnervation of the denervated striatum by substantia nigra transplants. Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res.199, 307–333 (1980).
  • Kordower J , FreemanT, SnowB et al.: Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson‘s disease. N. Engl. J. Med.332, 1118–1124 (1995).
  • Freund TF , BolamJP, BjörklundA et al.: Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host striatum: a tyrosine hydroxlase immuncytochemical study. J. Neurosci.5, 603–616 (1985).
  • Fisher LJ , YoungSJ, TepperJM, Groves PM, Gage FH: Electrophysiological characteristics of cells within mesencephalon suspension grafts. NeuroScience40(1), 109–122 (1991).
  • Kordower J , RosensteinJ, CollierT et al.: Functional fetal nigral grafts in a patient with Parkinson‘s disease: chemoanatomic, ulturastructural, and metabolic studies. J. Comp. Neurol370, 203–230 (1996).
  • Kordower JH , StyrenS, ClarkeM, DeKosky ST, Olanow CW, Freeman TB: Fetal grafting for Parkinson‘s disease: expression of immune markers in two patients with functional fetal nigral implants. Cell Transplant.6(3), 213–219 (1997).
  • Craven R : Disappointment for Parkinson‘s disease patients.Trends Pharmacol Sci22(5), 221 (2001).
  • Kolata G : Parkinson‘s research is set back by failure of fetal cell implants. The New York Times, 8th March (2001).
  • Vogel G : Parkinson‘s research. Fetal cell transplant trial draws fire.Science291(5511), 2060–2061 (2001).
  • Williams N : Setback spurs Parkinson‘s disease research.Curr. Biol.11(8), R285–R286 (2001).
  • Abbott A : Trials offer way forward for Parkinson‘s.Nature410(6827), 401 (2001).
  • Bakay RA : Is transplantation to treat Parkinson‘s disease dead?Neurosurgery49(3), 576–580 (2001).
  • Brundin P , DunnettS, BjorklundA, NikkhahG: Transplanted dopaminergic neurons: more or less?Nat Med7(5), 512–513 (2001).
  • Dunnett SB , BjorklundA, LindvallO: Cell therapy in Parkinson‘s disease – stop or go?Nat. Rev. Neurosci. 2(5), 365–369 (2001).
  • Fischbach GD , McKhannGM: Cell therapy for Parkinson‘s disease.N. Engl. J. Med.344(10), 763–765 (2001).
  • Isacson O , BjorklundL, PernauteRS: Parkinson‘s disease: interpretations of transplantation study are erroneous.Nat. Neurosci.4(6), 553 (2001).
  • Olanow CW , FreemanT, KordowerJ: Transplantation of embryonic dopamine neurons for severe Parkinson‘s disease.N. Engl. J. Med.345(2), 146–147 (2001).
  • Redmond DE Jr, Sladek JR, Spencer DD: Transplantation of embryonic dopamine neurons for severe Parkinson‘s disease. N. Engl. J. Med.345(2), 146–147 (2001).
  • Ungerstedt U , ArbuthnottGW: Quantitative recording of rotational behavior in rats after 6-hydroxy- dopamine lesions of the nigrostriatal dopamine system.Brain Res.24(3), 485–493 (1970).
  • Cenci MA , WhishawIQ, SchallertT: Animals models of neurological deficits: how relevant is the rat.Nat. Rev. Neurosci.3, 574–579 (2002).
  • Langston J , IrwinI, LangstonE, FornoL: 1?Methyl-4- phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra.Neurosci. Lett.48, 87–92 (1984).
  • Burns RS , LeWittPA, EbertMH, PakkenbergH, KopinIJ: The clinical syndrome of striatal dopamine deficiency: parkinsonism induced by 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP).N. Engl. J. Med.312(22), 1418–1421 (1985).
  • Langston JW , FornoLS, TetrudJ, Reeves AG, Kaplan JA, Karluk D: Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1?methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol.46(4), 598–605 (1999).
  • Burns RS , ChiuehCC, MarkeySP, Ebert MH, Jacobowitz DM, Kopin IJ: A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine. Proc. Natl Acad. Sci. USA80(14), 4546–4550 (1983).
  • Forno LS , DeLanneyLE, IrwinI, Langston JW: Neuropathology of MPTP-treated monkeys: comparison with the neuropathology of human idiopathic Parkinson‘s disease. In: MPTP: a neurotoxin producing a parkinsonian syndrome. Markey SP (Ed.) Academic Press, FL, USA. 119–140 (1986).
  • Deutch AY , ElsworthJD, Goldstein Met al.: Preferential vulnerability of A8 dopamine neurons in the primate to the neurotoxin 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine. Neurosci. Lett.68(1), 51–56 (1986).
  • Elsworth JD , DeutchAY, RedmondDE Jr, Sladek JR Jr, Roth RH: Differential responsiveness to 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine toxicity in sub-regions of the primate substantia nigra and striatum. Life. Sci.40(2), 193–202 (1987).
  • Elsworth JD , DeutchAY, RedmondDE Jr, Sladek JR Jr, Roth RH: Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on catecholamine and metabolites in primate brain and CSF. Brain Res.415, 293–299 (1987).
  • Taylor JR , ElsworthJD, SladekJR Jr, Roth RH, Redmond DE Jr: Behavioral effects of MPTP administration in the vervet monkey: a primate model of Parkinson‘s disease. In: Toxin-induced models of neurological disorders. Woodruff ML, Nonneman AJ (Eds). Plenum Press, NY, USA (1994).
  • Taylor JR , ElsworthJD, RothRH, SladekJR Jr, Redmond DE Jr: Severe long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced parkinsonism in the vervet monkey (Cercopithecus aethiops sabaeus). NeuroScience81, 745–755 (1997).
  • Kirik D , RosenbladC, BurgerC et al.: Parkinson-like neurodegeneration induced bytargeted overexpression of ??synuclein in the nigrostriatal dopamine system. J. Neurosci.22(7), 2780–2791 (2001).
  • Kirik D , AnnettLE, BurgerC, MuzyczkaN, MandelRJ, BjorklundA: Nigrostriatal ??synucleinopathy induced by viral vector-mediated overexpression of human ??synuclein: a new primate model of Parkinson‘s disease.Proc. Natl Acad. Sci. USA100(5), 2884–2889 (2003).
  • Dass B , OlanowCW, KordowerJH: Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson‘s disease.Neurology66(10 Suppl. 4), S89–S103 (2006).
  • Kordower JH , EmborgME, BlochJ et al.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson‘s disease. Science290(5492), 767–773 (2000).
  • Palfi S , LeventhalL, ChuY et al.: Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci.22(12), 4942–4954 (2002).
  • Soderstrom K , O'MalleyJ, Steece-CollierK, KordowerJH: Neural repair strategies for Parkinson's disease: insights from primate models.Cell Transplant.15(3), 251–265 (2006).
  • Slevin JT , GashDM, SmithCD et al.: Unilateral intraputaminal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year each of treatment and withdrawal. Neurosurg. Focus20(5), E12 (2006).
  • Barker RA : Continuing trials of GDNF in Parkinson‘s disease.LancetNeurol. 5(4), 285–286 (2006).
  • Chebrolu H , SlevinJT, GashDA et al.: MRI volumetric and intensity analysis of the cerebellum in Parkinson‘s disease patients infused with glial-derived neurotrophic factor (GDNF). Exp. Neurol.198(2), 450–456 (2006).
  • Lang AE , GillS, PatelNK et al.: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol.59(3), 459–466 (2006).
  • Patel NK , BunnageM, PlahaP, Svendsen CN, Heywood P, Gill SS: Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol.57(2), 298–302 (2005).
  • Nutt JG , BurchielKJ, ComellaCL et al.: Implanted intracerebroventricular. Glial cell line-derived neurotrophic factor. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology60(1), 69–73 (2003).
  • Gill SS , PatelNK, HottonGR et al.: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med.9(5), 589–595 (2003).
  • Kordower JH : In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson‘s disease.Ann. Neurol.53(Suppl. 3), S120–S132 (2003).
  • McBride JL , KordowerJH: Neuroprotection for Parkinson's disease using viral vector-mediated delivery of GDNF.Prog Brain Res.138, 421–432 (2002).
  • During MJ , KaplittMG, SternMB, EidelbergD: Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.Hum Gene Ther.12(12), 1589–1591 (2001).
  • During MJ , KaplittMG, SternMB et al.: A dose-ranging study of AAV-hAADC therapy in parkinsonian monkeys. Mol. Ther. (2006). ASK AUTHOR (Pubmed names authors of article as Forsayeth JR, Eberling JL, Sanftner LM)
  • Shreeve J : The other stem-cell debate: to test the potential curative powers of human embryonic stem cells, biologists want to inject them into lab animals. Creating such chimeras makes perfect sense, to a point: a sheep with a human liver? O.K. A mouse brain made up of human cells? Maybe. But a chimp that sobs? New York Times Magazine, 10th April (2005).
  • Robert JS : The Science and ethics of making part-human animals in stem cell biology.FASEB J.20(7), 838–845 (2006).
  • Greene M , SchillK, TakahashiS et al.: Ethics: moral issues of human–non-human primate neural grafting. Science309(5733), 385–386 (2005).
  • Laird AR , LancasterJL, FoxPT: BrainMap: the social evolution of a functional neuroimaging database.Neuroinformatics 3, 65–78 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.