1,186
Views
0
CrossRef citations to date
0
Altmetric
Special Focus: Mesenchymal Stem Cells – Review

The Concept of Mesenchymal Stem Cells

, &
Pages 497-509 | Published online: 18 Jul 2006

Bibliography

  • Phinney DG : Building a consensus regarding the nature and origin of mesenchymal stem cells.J. Cell Biochem. Suppl.38, 7–12 (2002).
  • La Russa VF , SchwarzenbergerP, MillerA, AgrawalK, KollsJ, WeinerR: Marrow stem cells, mesenchymal progenitor cells, and stromal progeny.Cancer Invest.20, 110–123 (2002).
  • Javazon EH , BeggsKJ, FlakeAW: Mesenchymal stem cells: paradoxes of passaging.Exp. Hematol.32, 414–425 (2004).
  • Barry FP , MurphyJM: Mesenchymal stem cells: clinical applications and biological characterization.Int. J. Biochem. Cell Biol.36, 568–584 (2004).
  • Baksh D , SongL, TuanRS: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy.J. Cell Mol. Med.8, 301–316 (2004).
  • Beyer Nardi N , da Silva Meirelles L: Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb. Exp. Pharmacol.249–282 (2006).
  • Friedenstein AJ , ChailakhjanRK, LalykinaKS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.Cell Tissue Kinet.3, 393–403 (1970).
  • Schofield R : The relationship between the spleen colony-forming cell and the haemopoietic stem cell.Blood Cells4, 7–25 (1978).
  • Spradling A , Drummond-BarbosaD, KaiT: Stem cells find their niche.Nature414, 98–104 (2001).
  • Tokoyoda K , EgawaT, SugiyamaT, ChoiBI, NagasawaT: Cellular niches controlling B lymphocyte behavior within bone marrow during development.Immunity20, 707–718 (2004).
  • Caplan AI : Mesenchymal stem cells.J. Orthop. Res.9, 641–650 (1991).
  • Prockop DJ : Marrow stromal cells as stem cells for nonhematopoietic tissues.Science276, 71–74 (1997).
  • Owen M : Marrow stromal stem cells.J. Cell Sci. Suppl.10, 63–76 (1988).
  • Bianco P ,P Gehron Robey: Marrow stromal stem cells. J. Clin. Invest.105, 1663–1668 (2000).
  • Bianco P , RiminucciM, GronthosS, RobeyPG: Bone marrow stromal stem cells: nature, biology, and potential applications.Stem Cells19, 180–192 (2001).
  • Dennis JE , MerriamA, AwadallahA, YooJU, JohnstoneB, CaplanAI: A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse.J. Bone Miner. Res.14, 700–709 (1999).
  • Reyes M , LundT, LenvikT, AguiarD, KoodieL, VerfaillieCM: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.Blood98, 2615–2625 (2001).
  • Jiang Y , JahagirdarBN, RL Reinhardt et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418, 41–49 (2002).
  • Campagnoli C , RobertsIA, KumarS, BennettPR, BellantuonoI, FiskNM: Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow.Blood98, 2396–2402 (2001).
  • Mendes SC , RobinC, DzierzakE: Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny.Development132, 1127–1136 (2005).
  • Van den Heuvel RL , VerseleSR, SchoetersGE, VanderborghtOL: Stromal stem cells (CFU-f) in yolk sac, liver, spleen and bone marrow of pre- and postnatal mice.Br. J. Haematol.66, 15–20 (1987).
  • Wolf NS , BertoncelloI, JiangD, PriestleyG: Developmental hematopoiesis from prenatal to young-adult life in the mouse model.Exp. Hematol.23, 142–146 (1995).
  • Meirelles LD , ChagastellesPC, NardiNB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues.J. Cell Sci. (2006).
  • Lazarus HM , HaynesworthSE, GersonSL, CaplanAI: Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections.J. Hematother.6, 447–455 (1997).
  • Wexler SA , DonaldsonC, Denning-KendallP, RiceC, BradleyB, HowsJM: Adult bone marrow is a rich source of human mesenchymal ‘stem‘ cells but umbilical cord and mobilized adult blood are not.Br. J. Haematol.121, 368–374 (2003).
  • Kuznetsov SA , MankaniMH, GronthosS, SatomuraK, BiancoP, RobeyPG: Circulating skeletal stem cells.J. Cell Biol.153, 1133–1140 (2001).
  • Minasi MG , RiminucciM, L De Angelis et al.: The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development129, 2773–2783 (2002).
  • Dexter TM , AllenTD, LajthaLG: Conditions controlling the proliferation of haemopoietic stem cells in vitro.J. Cell Physiol.91, 335–344 (1977).
  • Moore KA , LemischkaIR: Stem cells and their niches.Science311, 1880–1885 (2006).
  • Yin T , LiL: The stem cell niches in bone.J. Clin. Invest.116, 1195–1201 (2006).
  • Adams GB , ScaddenDT: The hematopoietic stem cell in its place.Nat. Immunol.7, 333–337 (2006).
  • Muguruma Y , YahataT, MiyatakeH et al.: Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood107, 1878–1887 (2006).
  • Charbord P : Stromal support in hematopoiesis.Stem Cell Handbook143–154 (2003).
  • Davey RE , ZandstraPW: Signal processing underlying extrinsic control of stem cell fate.Curr. Opin. Hematol.11, 95–101 (2004).
  • Gregory CA , YlostaloJ, ProckopDJ: Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two-stage hypothesis for regulation of MSC fate.Sci. STKE37 (2005).
  • Potten CS , LoefflerM: Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt.Development110, 1001–1020 (1990).
  • Loeffler M , PottenCS: Stem cells and cellular pedigrees – a conceptual introduction.Stem Cells. Academic Press, NY, USA, 119–146 (1997).
  • Loeffler M , RoederI: Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models--a conceptual approach.Cells Tissues Organs171, 8–26 (2002).
  • Haynesworth SE , BaberMA, CaplanAI: Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies.Bone13, 69–80 (1992).
  • Vogel W , GrunebachF, MessamCA, KanzL, BruggerW, BuhringHJ: Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells.Haematologica88, 126–133 (2003).
  • Pittenger MF , MackayAM, BeckSC et al.: Multilineage potential of adult human mesenchymal stem cells. Science284, 143–147 (1999).
  • Colter DC , ClassR, DiGirolamoCM, ProckopDJ: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow.Proc. Natl Acad. Sci. USA97, 3213–3218 (2000).
  • Colter DC , SekiyaI, ProckopDJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells.Proc. Natl Acad. Sci. USA98, 7841–7845 (2001).
  • Sekiya I , LarsonBL, SmithJR, PochampallyR, CuiJG, ProckopDJ: Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality.Stem Cells20, 530–541 (2002).
  • Muraglia A , CanceddaR, QuartoR: Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.J. Cell Sci.113(Pt 7), 1161–1166 (2000).
  • Phinney DG , KopenG, RighterW, WebsterS, TremainN, ProckopDJ: Donor variation in the growth properties and osteogenic potential of human marrow stromal cells.J. Cell Biochem.75, 424–436 (1999).
  • Okamoto T , AoyamaT, NakayamaT et al.: Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem. Biophys. Res. Commun.295, 354–361 (2002).
  • Satomura K , KrebsbachP, BiancoP, Gehron Robey P: Osteogenic imprinting upstream of marrow stromal cell differentiation. J. Cell Biochem.78, 391–403 (2000).
  • Kuznetsov SA , KrebsbachPH, SatomuraK et al.: Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res.12, 1335–1347 (1997).
  • Gronthos S , ZannettinoAC, GravesSE, OhtaS, HaySJ, SimmonsPJ: Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells.J. Bone Miner. Res.14, 47–56 (1999).
  • Bensidhoum M , ChapelA, FrancoisS et al.: Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood103, 3313–3319 (2004).
  • Lee RH , HsuSC, MunozJ et al.: A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood107, 2153–2161 (2006).
  • Gregory CA , PerryAS, ReyesE, ConleyA, GunnWG, ProckopDJ: Dkk-1-derived synthetic peptides and lithium chloride for the control and recovery of adult stem cells from bone marrow.J. Biol. Chem.280, 2309–2323 (2005).
  • Smith JR , PochampallyR, PerryA, HsuSC, ProckopDJ: Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma.Stem Cells22, 823–831 (2004).
  • Gronthos S , ZannettinoAC, HaySJ et al.: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell Sci.116, 1827–1835 (2003).
  • Dennis JE , CharbordP: Origin and differentiation of human and murine stroma.Stem Cells20, 205–214 (2002).
  • Short B , BrouardN, Occhiodoro-ScottT, RamakrishnanA, SimmonsPJ: Mesenchymal stem cells.Arch. Med. Res.34, 565–571 (2003).
  • Pereira RF , HalfordKW, O‘HaraMD et al.: Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl Acad. Sci. USA92, 4857–4861 (1995).
  • Almeida-Porada G , PoradaCD, TranN, ZanjaniED: Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation.Blood95, 3620–3627 (2000).
  • Rombouts WJ , PloemacherRE: Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture.Leukemia17, 160–170 (2003).
  • Devine SM , BartholomewAM, MahmudN et al.: Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol.29, 244–255 (2001).
  • Dahir GA , CuiQ, P Anderson et al.: Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin. Orthop. Relat. Res.S134–S145 (2000).
  • Liechty KW , MacKenzieTC, ShaabanAF et al.: Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med.6, 1282–1286 (2000).
  • Anjos-Afonso F , SiapatiEK, BonnetD: In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions.J. Cell Sci.117, 5655–5664 (2004).
  • Barbash IM , ChouraquiP, BaronJ et al.: Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation108, 863–868 (2003).
  • Rochefort GY , VaudinP, BonnetN et al.: Influence of hypoxia on the domiciliation of mesenchymal stem cells after infusion into rats: possibilities of targeting pulmonary artery remodeling via cells therapies? Respir. Res.6, 125 (2005).
  • Francois S , BensidhoumM, MouiseddineM et al.: Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells24, 1020–1029 (2006).
  • O'Donoghue K , ChanJ, de la Fuente J et al.: Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet364, 179–182 (2004).
  • Sato Y , ArakiH, KatoJ et al.: Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood106, 756–763 (2005).
  • Pochampally RR , NevilleBT, SchwarzEJ, LiMM, ProckopDJ: Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion.Proc. Natl Acad. Sci. USA101, 9282–9285 (2004).
  • Alvarez-Dolado M , PardalR, Garcia-VerdugoJM et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425, 968–973 (2003).
  • Bruder SP , JaiswalN, HaynesworthSE: Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.J. Cell Biochem.64, 278–294 (1997).
  • Banfi A , BianchiG, NotaroR, LuzzattoL, CanceddaR, QuartoR: Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells.Tissue Eng.8, 901–910 (2002).
  • Pochampally RR , SmithJR, YlostaloJ, ProckopDJ: Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes.Blood103, 1647–1652 (2004).
  • Simonsen JL , RosadaC, N Serakinci et al.: Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol.20, 592–596 (2002).
  • Kawano Y , KobuneM, YamaguchiM et al.: Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)-transfected human stromal cells. Blood101, 532–540 (2003).
  • Liu CM , DiGirolamoL, NavarroPA, BlascoMA, KeefeDL: Telomerase deficiency impairs differentiation of mesenchymal stem cells.Exp. Cell Res.294, 1–8 (2004).
  • Pereira RF , MD O‘Hara, AV Laptev et al.: Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl Acad. Sci. USA95, 1142–1147 (1998).
  • Bonyadi M , WaldmanSD, LiuD, AubinJE, GrynpasMD, StanfordWL: Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice.Proc. Natl Acad. Sci. USA100, 5840–5845 (2003).
  • Horwitz EM , GordonPL, KooWK et al.: Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl Acad. Sci. USA99, 8932–8937 (2002).
  • Horwitz EM , ProckopDJ, GordonPL et al.: Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood97, 1227–1231 (2001).
  • Quarto R , MastrogiacomoM, CanceddaR et al.: Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med.344, 385–386 (2001).
  • Hoffmann A , PelledG, TurgemanG et al.: Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J. Clin. Invest.116, 940–952 (2006).
  • Oswald J , BoxbergerS, JorgensenB et al.: Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells22, 377–384 (2004).
  • Jiang Y , VaessenB, LenvikT, BlackstadM, ReyesM, VerfaillieCM: Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain.Exp. Hematol.30, 896–904 (2002).
  • Santa Maria L , RojasCV, MinguellJJ: Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells.Exp. Cell Res.300, 418–426 (2004).
  • Wakitani S , SaitoT, CaplanAI: Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.Muscle Nerve18, 1417–1426 (1995).
  • Shi D , ReineckeH, MurryCE, Torok-StorbB: Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells.Blood104, 290–294 (2004).
  • Lee JH , KosinskiPA, KempDM: Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation.Exp. Cell Res.307, 174–182 (2005).
  • Schulze M , F Belema-Bedada, Technau A, Braun T: Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. Genes Dev.19, 1787–1798 (2005).
  • De B ari C, Dell‘Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP: Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J. Cell Biol.160, 909–918 (2003).
  • Toma C , PittengerMF, CahillKS, ByrneBJ, KesslerPD: Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation105, 93–98 (2002).
  • Dezawa M , IshikawaH, ItokazuY et al.: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science309, 314–317 (2005).
  • Makino S , FukudaK, MiyoshiS et al.: Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103, 697–705 (1999).
  • Bittira B , KuangJQ, Al-Khaldi A, Shum-Tim D, Chiu RC: In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann. Thorac. Surg.74, 1154–1159; discussion 1159–1160 (2002).
  • Hakuno D , FukudaK, MakinoS et al.: Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation105, 380–386 (2002).
  • Xu W , ZhangX, QianH et al.: Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp. Biol. Med. (Maywood)229, 623–631 (2004).
  • Shake JG , GruberPJ, BaumgartnerWA et al.: Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg.73, 1919–1925; discussion 1926 (2002).
  • Nagaya N , FujiiT, IwaseT et al.: Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am. J. Physiol. Heart Circ. Physiol.287, H2670–H2676 (2004).
  • Nagaya N , KangawaK, ItohT et al.: Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation112, 1128–1135 (2005).
  • Chen SL , FangWW, QianJ et al.: Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin. Med. J.117, 1443–1438 (2004).
  • Wollert KC , MeyerGP, LotzJ et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004).
  • Schaefer A , MeyerGP, FuchsM et al.: Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur. Heart J.27, 929–935 (2006).
  • Katritsis DG , SotiropoulouPA, KarvouniE et al.: Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc. Interv.65, 321–329 (2005).
  • Loeffler M , RoederI: Conceptual models to understand tissue stem cell organization.Curr. Opin. Hematol.11, 81–87 (2004).
  • Roeder I , LoefflerM: A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity.Exp. Hematol.30, 853–861 (2002).
  • Park SR , OreffoRO, TriffittJT: Interconversion potential of cloned human marrow adipocytes in vitro.Bone24, 549–254 (1999).
  • Song L , TuanRS: Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow.FASEB J.18, 980–982 (2004).
  • Dennis JE , CarbilletJP, CaplanAI, CharbordP: The STRO-1+ marrow cell population is multipotential.Cells Tissues Organs170, 73–82 (2002).
  • Chagraoui J , Lepage-NollA, AnjoA, UzanG, CharbordP: Fetal liver stroma consists of cells in epithelial-to-mesenchymal transition.Blood101, 2973–2982 (2003).
  • Woodbury D , SchwarzEJ, ProckopDJ, BlackIB: Adult rat and human bone marrow stromal cells differentiate into neurons.J. Neurosci. Res.61, 364–370 (2000).
  • Woodbury D , ReynoldsK, BlackIB: Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis.J. Neurosci. Res.69, 908–917 (2002).
  • Egusa H , SchweizerFE, WangCC, MatsukaY, NishimuraI: Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing.J. Biol. Chem.280, 23691–23697 (2005).
  • Zipori D : The nature of stem cells: state rather than entity.Nat. Rev. Genet.5, 873–878 (2004).
  • Zipori D : The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional.Stem Cells23, 719–726 (2005).
  • Simmons PJ , Torok-StorbB: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1.Blood78, 55–62 (1991).
  • Van Vlasselaer P , FallaN, SnoeckH, MathieuE: Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin.Blood84, 753–763 (1994).
  • Waller EK , OlweusJ, Lund-JohansenF et al.: The “common stem cell” hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood85, 2422–2435 (1995).
  • Wilkins BS , JonesDB: Immunophenotypic characterization of stromal cells in aspirated human bone marrow samples.Exp. Hematol.26, 1061–1067 (1998).
  • Filshie RJ , ZannettinoAC, MakrynikolaV et al.: MUC18, a member of the immunoglobulin superfamily, is expressed on bone marrow fibroblasts and a subset of hematological malignancies. Leukemia12, 414–421 (1998).
  • Deschaseaux F , CharbordP: Human marrow stromal precursors are alpha 1 integrin subunit-positive.J. Cell Physiol.184, 319–325 (2000).
  • Majumdar MK , BanksV, PelusoDP, MorrisEA: Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells.J. Cell Physiol.185, 98–106 (2000).
  • Tanaka-Douzono M , SuzuS, YamadaM et al.: Detection of murine adult bone marrow stroma-initiating cells in Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells. J. Cell Physiol.189, 45–53 (2001).
  • Jones EA , KinseySE, EnglishA et al.: Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum.46, 3349–3360 (2002).
  • Stewart K , MonkP, WalshS, JefferissCM, LetchfordJ, BeresfordJN: STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro.Cell Tissue Res.313, 281–290 (2003).
  • Shi S , GronthosS: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp.J. Bone Miner. Res.18, 696–704 (2003).
  • Boiret N , RapatelC, Veyrat-MassonR et al.: Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp. Hematol.33, 219–225 (2005).
  • Gregory CA , ProckopDJ, SpeesJL: Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation.Exp. Cell Res.306, 330–335 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.