383
Views
0
CrossRef citations to date
0
Altmetric
Special Focus: Mesenchymal Stem Cells – Review

3D Scaffolds for Bone Marrow Stem Cell Support in Bone Repair

, &
Pages 519-528 | Published online: 18 Jul 2006

Bibliography

  • Owen M , FriedensteinAJ: Stromal stem cells: marrow-derived osteogenic precursors.Ciba Found. Symp.136, 42–60 (1988).
  • Hutmacher DW : Scaffolds in tissue engineering bone and cartilage.Biomaterials21, 2529–2543 (2000).
  • Riminucci M , BiancoP: Building bone tissue: matrices and scaffolds in physiology and biotechnology.Braz. J. Med. Biol. Res.36, 1027–1036 (2003).
  • Petite H , ViateauV, BensaidW et al.: Tissue-engineered bone regeneration. Nat. Biotechnol.18, 959–963 (2000).
  • Service RF : Tissue engineers build new bone.Science289, 1498–1500 (2000).
  • Schaefer D , MartinI, JundtG et al.: Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum.46, 2524–2534 (2002).
  • Fialkov JA , HolyCE, ShoichetMS, DaviesJE: In vivo bone engineering in a rabbit femur.J. Craniofac. Surg.14, 324–332 (2003).
  • Quarto R , MastrogiacomoM, CanceddaR et al.: Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med.344, 385–386 (2001).
  • Friedenstein AJ , PiatetzkyS, II, Petrakova KV: Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol.16, 381–390 (1966).
  • Pittenger MF , MoscaJD, McIntoshKR: Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma.Curr.Top.Microbiol.Immunol.251, 3–11 (2000).
  • Bianco P , Gehron Robey P: Marrow stromal Stem CellsJ. Clin. Invest.105, 1663–1668 (2000).
  • Bianco P , RiminucciM, GronthosS, RobeyPG: Bone marrow stromal stem cells: nature, biology, and potential applications.Stem Cells19, 180–192 (2001).
  • Bianco P , RobeyPG: Stem cells in tissue engineering.Nature414, 118–121 (2001).
  • Tuan RS , BolandG, TuliR: Adult mesenchymal stem cells and cell-based tissue engineering.Arthritis Res. Ther.5, 32–45 (2003).
  • Abbott A : Cell culture: biology's new dimension.Nature424, 870–872 (2003).
  • Zhang S : Beyond the Petri dish.N. Biotechnol.22, 151–152 (2004).
  • Tuzlakoglu K , BolgenN, SalgadoAJ et al.: Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J. Mater. Sci. Mater. Med. 16, 1099–1104 (2005).
  • Liu F , VenturaF, DoodyJ, MassagueJ: Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs.Mol. Cell Biol.15, 3479–3486 (1995).
  • Endres M , HutmacherDW, SalgadoAJ et al.: Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng.9, 689–702 (2003).
  • Hutmacher DW : Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives.J. Biomater. Sci. Polym. Ed.12, 107–124 (2001).
  • Lee SC , SheaM, BattleMA et al.: Healing of large segmental defects in rat femurs is aided by RhBMP-2 in PLGA matrix. J. Biomed. Mater.Res.28, 1149–1156 (1994).
  • Ueki K , TakazakuraD, MarukawaK et al.: The use of polylactic acid/polyglycolic acid copolymer and gelatin sponge complex containing human recombinant bone morphogenetic protein-2 following condylectomy in rabbits. J. Craniomaxillofac. Surg.31, 107–114 (2003).
  • Higuchi T , KinoshitaA, TakahashiK, OdaS, IshikawaI: Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling.J. Periodontol.70, 1026–1031 (1999).
  • Cohn D , SalomonAH: Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.Biomaterials. 26, 2297–2305 (2005).
  • Livingston T , DucheyneP, GarinoJ: In vivo evaluation of a bioactive scaffold for bone tissue engineering.J. Biomed. Mater.Res.62, 1–13 (2002).
  • Arinzeh TL , PeterSJ, ArchambaultMP et al.: Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am.A85, 1927–1935 (2003).
  • Gombotz WR , PankeySC, BouchardLS, PhanDH, PuolakkainenPA: Stimulation of bone healing by transforming growth factor-β 1 released from polymeric or ceramic implants.J. Appl. Biomater.5, 141–150 (1994).
  • Jansen JA : Tissue engineering.Ned Tijdschr Tandheelkd.109, 178–181 (2002).
  • Lind M , OvergaardS, SoballeK et al.: Transforming growth factor-β 1 enhances bone healing to unloaded tricalcium phosphate coated implants: an experimental study in dogs. J. Orthop. Res.14, 343–350 (1996).
  • Bell R , BeirneOR: Effect of hydroxylapatite, tricalcium phosphate, and collagen on the healing of defects in the rat mandible.J. Oral Maxillofac. Surg.46, 589–594 (1988).
  • Bohner M : Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements.Injury31(Suppl. 4), 37–47 (2000).
  • Bohner M , LemaitreJ, MerkleHP, GanderB: Control of gentamicin release from a calcium phosphate cement by admixed poly(acrylic acid).J. Pharm. Sci.89, 1262–1270 (2000).
  • Fleming JE Jr, Cornell CN, Muschler GF: Bone cells and matrices in orthopedic tissue engineering. Orthop.Clin. North Am.31, 357–374 (2000).
  • Schopper C , Ziya-GhazviniF, GoriwodaW et al.: HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation--a long-term histological study. J. Biomed. Mater. Res. B. Appl. Biomater.74, 458–467 (2005).
  • Le Guehennec L , LayrolleP, DaculsiG: A review of bioceramics and fibrin sealant.Eur. Cell Mater.8, 1–11 (2004).
  • Chiroff RT , WhiteEW, WeberKN, RoyDM: Tissue ingrowth of Replamineform implants.J. Biomed. Mater.Res.9, 29–45 (1975).
  • White E , ShorsEC: Biomaterial aspects of Interpore-200 porous hydroxyapatite.Dent. Clin. North Am.30, 49–67 (1986).
  • Haddock SM , DebesJC, NaumanEA et al.: Structure-function relationships for coralline hydroxyapatite bone substitute. J. Biomed. Mater.Res.47, 71–78 (1999).
  • Yamamoto M , IkadaY, TabataY: Controlled release of growth factors based on biodegradation of gelatin hydrogel.J. Biomater. Sci. Polym. Ed.12, 77–88 (2001).
  • Yamamoto M , SakakibaraY, NishimuraK, KomedaM, TabataY: Improved therapeutic efficacy in cardiomyocyte transplantation for myocardial infarction with release system of basic fibroblast growth factor.Artif.Organs27, 181–184 (2003).
  • Yamamoto M , TabataY, HongL et al.: Bone regeneration by transforming growth factor β1 released from a biodegradable hydrogel. J. Control. Release64, 133–142 (2000).
  • Li X , JinL, BalianG, LaurencinCT, Greg Anderson D: Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials27(11), 2426-2433 (2005).
  • Walsh WR , HarrisonJ, LoeflerA et al.: Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model. Clin.Orthop.375, 258–266 (2000).
  • Brodie JC , GoldieE, ConnelG, MerryJ, GrantMH: Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. JBiomed.Mater.Res. A.73, 409–421 (2005).
  • Buckley CT , O'KellyKU: Regular scaffold fabrication techniques for investigations in tissue engineering. In:Topics in Bio-Mechanical Engineering. Prendergast PJ, McHugh PE (Eds). Trinity Centre for Bioengineering & the National Centre for Biomedical Engineering Science, Dublin, Ireland 147–166 (2004).
  • Edwards SL , MitchellW, MatthewsJB, InghamE, RussellSJ: Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament.AUTEX Research Journal4, 86–94 (2004).
  • Salgado AJ , CoutinhoOP, ReisRL: Bone tissue engineering: state of the art and future trends.Macromol.Biosci.4, 743–765 (2004).
  • Eriksson C : Bone morphogenesis and surface charge.Clin.Orthop.Relat.Res.121, 295–302 (1976).
  • Maroudas NG : Sulphonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions.J. Cell Physiol.90, 511–519 (1977).
  • Albrektsson T , JohanssonC: Osteoinduction, osteoconduction and osseointegration.Eur. Spine J.10(Suppl 2), S96–S101 (2001).
  • Lohmann CH , BonewaldLF, SiskMA et al.: Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J. Bone Miner. Res.15, 1169–1180 (2000).
  • Xie Y , SprouleT, LiY et al.: Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro. J. Biomed. Mater.Res.61, 234–245 (2002).
  • Campoccia D , ArciolaCR, CervellatiM, MaltarelloMC, MontanaroL: In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness. Biomaterials. 24, 587–596 (2003).
  • Sachlos E , CzernuszkaJT: Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds.Eur. Cell Mater.5, 29–39; discussion 39–40 (2003).
  • Rezwan K , ChenQZ, BlakerJJ, BoccacciniAR: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials. 27, 3413–3431 (2006).
  • Mikos AG , LymanMD, FreedLE, LangerR: Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture.Biomaterials. 15, 55–58 (1994).
  • Mooney DJ , BaldwinDF, SuhNP, VacantiJP, LangerR: Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.Biomaterials. 17, 1417–1422 (1996).
  • Cima LG , VacantiJP, VacantiC et al.: Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng.113, 143–151 (1991).
  • Mikos AG , BaoY, CimaLG et al.: Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater.Res.27, 183–189 (1993).
  • Thomson RC , YaszemskiMJ, PowersJM, MikosAG: Fabrication of biodegradable polymer scaffolds to engineer trabecular bone.J. Biomater. Sci. Polym. Ed.7, 23–38 (1995).
  • Whang K , HealyKE, ElenzDR, et al.: Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng.5, 35–51 (1999).
  • Schmitz JP , HollingerJO: A preliminary study of the osteogenic potential of a biodegradable alloplastic-osteoinductive alloimplant.Clin.Orthop.Relat.Res.245–255 (1988).
  • Yannas IV , BurkeJF: Design of an artificial skin. I. Basic design principles.J. Biomed. Mater.Res.14, 65–81 (1980).
  • Hollister SJ , LinCY, SaitoE et al.: Engineering craniofacial scaffolds. Orthod.Craniofac.Res.8, 162–173 (2005).
  • Stevens MM , GeorgeJH: Exploring and engineering the cell surface interface.Science310, 1135–1138 (2005).
  • Ratner BD , BryantSJ: Biomaterials: where we have been and where we are going.Annu.Rev. Biomed.Eng.6, 41–75 (2004).
  • Yoshimoto H , ShinYM, TeraiH, VacantiJP: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering.Biomaterials. 24, 2077–2082 (2003).
  • Murugan R , RamakrishnaS: Nano-featured scaffolds for tissue engineering: a review of spinning methodologies.Tissue Eng.12, 435–447 (2006).
  • Zussman E , TheronA, YarinAL: Formation of nanofiber crossbars in electrospinning.Applied Physics Letters. 82, 973–975 (2003).
  • Li WJ , LaurencinCT, CatersonEJ, TuanRS, KoFK: Electrospun nanofibrous structure: a novel scaffold for tissue engineering.J. Biomed. Mater.Res.60, 613–621 (2002).
  • Khademhosseini A , LangerR, BorensteinJ, VacantiJP: Microscale technologies for tissue engineering and biology.Proc. Natl Acad. Sci. U.S.A.103, 2480–2487 (2006).
  • Yamada KM : Adhesive recognition sequences.J. Biol. Chem.266, 12809–12812 (1991).
  • Hubbell JA : Biomaterials in tissue engineering.Biotechnology13, 565–576 (1995).
  • Borkenhagen M , ClemenceJF, SigristH, AebischerP: Three-dimensional extracellular matrix engineering in the nervous system.J. Biomed. Mater.Res.40, 392–400 (1998).
  • Bokel C , BrownNH: Integrins in development: moving on, responding to, and sticking to the extracellular matrix.Dev. Cell3, 311–321 (2002).
  • El-Amin SF , KofronMD, AttawiaMA et al.: Molecular regulation of osteoblasts for tissue engineered bone repair. Clin.Orthop.Relat.Res.220–225 (2004).
  • Kroese-Deutman HC , van den Dolder J, Spauwen PH, Jansen JA: Influence of RGD-loaded titanium implants on bone formation in vivo. Tissue Eng.11, 1867–1875 (2005).
  • Kim TG , ParkTG: Biomimicking Extracellular Matrix: Cell Adhesive RGD Peptide Modified Electrospun Poly(D,L-lactic-co-glycolic acid) Nanofiber Mesh.Tissue Eng.12, 221–233 (2006).
  • Canalis E , CentrellaM, McCarthyT: Effects of basic fibroblast growth factor on bone formation in vitro.J. Clin. Invest.81, 1572–1577 (1988).
  • Canalis E , McCarthyT, CentrellaM: A bone-derived growth factor isolated from rat calvariae is β 2 microglobulin.Endocrinology121, 1198–1200 (1987).
  • Canalis E , McCarthyT, CentrellaM: Growth factors and the regulation of bone remodeling.J. Clin. Invest.81, 277–281 (1988).
  • Canalis E , McCarthyT, CentrellaM: Isolation of growth factors from adult bovine bone.Calcif.Tissue Int.43, 346–351 (1988).
  • Canalis E , McCarthyTL, CentrellaM: The role of growth factors in skeletal remodeling.Endocrinol.Metab.Clin. North Am.18, 903–918 (1989).
  • Joyce ME , JingushiS, ScullySP, BolanderME: Role of growth factors in fracture healing.Prog.Clin.Biol. Res.365, 391–416 (1991).
  • Bonewald LF , MundyGR: Role of transforming growth factor-β in bone remodeling.Clin.Orthop.250, 261–276 (1990).
  • Mohan S , BaylinkDJ: Bone growth factors.Clin.Orthop.263, 30–48 (1991).
  • Lind M : Growth factors: possible new clinical tools. A review.Acta.Orthop.Scand.67, 407–417 (1996).
  • Lind M , OvergaardS, OngpipattanakulB et al.: Transforming growth factor-β 1 stimulates bone ongrowth to weight-loaded tricalcium phosphate coated implants: an experimental study in dogs. J. Bone Joint Surg. Br.78, 377–382 (1996).
  • Varkey M , GittensSA, UludagH: Growth factor delivery for bone tissue repair: an update.Expert Opin.Drug Deliv.1, 19–36 (2004).
  • Martin TJ , NgKW, NicholsonGC: Cell biology of bone.Baillieres Best Pract. Res. Clin. Endocrinol.Metab.2, 1–29 (1988).
  • Urist MR : Bone: formation by autoinduction.Science150, 893–899 (1965).
  • Urist MR , StratesBS: Bone morphogenetic protein.J. Dent. Res.50, 1392–1406 (1971).
  • Ducy P , KarsentyG: The family of bone morphogenetic proteins.Kidney Int.57, 2207–2214 (2000).
  • Asahina I , SampathTK, NishimuraI, HauschkaPV: Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria.J. Cell Biol.123, 921–933 (1993).
  • Hughes FJ , CollyerJ, StanfieldM, GoodmanSA: The effects of bone morphogenetic protein-2, -4, and -6 on differentiation of rat osteoblast cells in vitro.Endocrinology136, 2671–2677 (1995).
  • Okubo Y , BesshoK, FujimuraK, IizukaT, MiyatakeS: Expression of bone morphogenetic protein-2 via adenoviral vector in C2C12 myoblasts induces differentiation into the osteoblast lineage.Biochem.Biophys. Res. Commun.262, 739–743 (1999).
  • Groeneveld EH , BurgerEH: Bone morphogenetic proteins in human bone regeneration.Eur. J. Endocrinol.142, 9–21 (2000).
  • Duguy N , PetiteH, ArnaudE: Biomaterials and osseous regeneration.Ann. Chir. Plast.Esthet.45, 364–376 (2000).
  • Ames CP , NottmeierEW, DickmanCA, VKHS: Targeted Tissue Engineering in Spinal Surgery, The Bone Morphogenetic Proteins: Past, Present Future,BNI Quarterly19(1), 4–16 (2003).
  • Srouji S , Blumenfeld,I., Rachmiel A., and Livne: Bone defectosteoinduction in rat tibia by TGF- and IGF-1 released from a biodegradable hydrogel. Cell Tissue Bank. (2004).
  • Srouji S , Rachmiel.A, Livne,E.,: Induction of mandibule defect repair by TGF- and IGF-I released from Biodegradable osteoconduction hydrogel. Cranio-MaxillofacSurg. (2004).
  • Augat P , MargeviciusK, SimonJ et al.: Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J. Orthop. Res.16, 475–481 (1998).
  • Blumenfeld I , SroujiS, PeledM, LivneE: Metalloproteinases (MMPs -2, -3) are involved in TGF-β and IGF-1-induced bone defect healing in 20-month-old female rats.Arch. Gerontol. Geriatr.35, 59–69 (2002).
  • Blumenfeld I , SroujiS, LanirY, LauferD, LivneE: Enhancement of bone defect healing in old rats by TGF-β and IGF-1.Exp. Gerontol.37, 553–565 (2002).
  • Kneser U , SchaeferDJ, PolykandriotisE, HorchRE: Tissue engineering of bone: the reconstructive surgeon's point of view.J. Cell Mol. Med.10, 7–19 (2006).
  • Wong C , InmanE, SpaetheR, HelgersonS: Fibrin-based Biomaterials to deliver human growth factors.Thromb.Haemost.89, 573–582 (2003).
  • Wenger A , StahlA, WeberH et al.: Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng.10, 1536–1547 (2004).
  • Putney SD , BurkePA: Improving protein therapeutics with sustained-release formulations.Nat. Biotechnol.16, 153–157 (1998).
  • Luginbuehl V , MeinelL, MerkleHP, GanderB: Localized delivery of growth factors for bone repair.Eur. J. Pharm. Biopharm.58, 197–208 (2004).
  • Edelman ER , MathiowitzE, LangerR, KlagsbrunM: Controlled and modulated release of basic fibroblast growth factor.Biomaterials. 12, 619–626 (1991).
  • Sakiyama-Elberta SE , HubbellJA: Development of fibrin derivatives for controlled release of heparin-binding growth factors.J. Control. Release65, 389–402 (2000).
  • Wissink MJ , BeerninkR, ScharenborgNM et al.: Endothelial cell seeding of (heparinized) collagen matrices: effects of bFGF pre-loading on proliferation (after low density seeding) and pro-coagulant factors. J. Control. Release67, 141–155 (2000).
  • Mann BK , SchmedlenRH, WestJL: Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells.Biomaterials. 22, 439–444 (2001).
  • Jin QM , AnusaksathienO, WebbSA, RutherfordRB, GiannobileWV: Gene therapy of bone morphogenetic protein for periodontal tissue engineering.J. Periodontol.74, 202–213 (2003).
  • Schek RM , TaboasJM, SegvichSJ, HollisterSJ, KrebsbachPH: Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds.Tissue Eng.10, 1376–1385 (2004).
  • Schek RM , WilkeEN, HollisterSJ, KrebsbachPH: Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering.Biomaterials. 27, 1160–1166 (2006).
  • Botchwey EA , PollackSR, LevineEM, LaurencinCT: Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system.J. Biomed. Mater.Res.55, 242–253 (2001).
  • Meinel L , KarageorgiouV, FajardoR et al.: Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann. Biomed.Eng.32, 112–122 (2004).
  • Sikavitsas VI , TemenoffJS, MikosAG: Biomaterials and bone mechanotransduction.Biomaterials. 22, 2581–2593 (2001).
  • Franceschi RT , XiaoG: Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways.J. Cell Biochem.88, 446–454 (2003).
  • Wang DA , WilliamsCG, YangF et al.: Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng.11, 201–213 (2005).
  • Lee YM , SeolYJ, LimYT et al.: Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J. Biomed. Mater.Res.54, 216–223 (2001).
  • Chen F , MaoT, TaoK et al.: Bone graft in the shape of human mandibular condyle reconstruction via seeding marrow-derived osteoblasts into porous coral in a nude mice model. J. Oral Maxillofac. Surg.60, 1155–1159 (2002).
  • Nunamaker DM : Experimental models of fracture repair.Clin.Orthop.Relat. Res.S56–S65 (1998).
  • Schantz JT , HutmacherDW, ChimH et al.: Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant.11, 125–138 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.