2,884
Views
0
CrossRef citations to date
0
Altmetric
Special Focus: Mesenchymal Stem Cells – Review

Engineered Mesenchymal Stem Cells for Cartilage Repair

, , &
Pages 529-537 | Published online: 18 Jul 2006

Bibliography

  • Jackson DW , SimonTM: Chondrocyte transplantation.Arthroscopy12, 732–738 (1996).
  • Minas T , NehrerS: Current concepts in the treatment of articular cartilage defects.Orthopedics20, 525–538 (1997).
  • Brittberg M , LindahlA, NilssonA et al.: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med.331, 889–895 (1994).
  • Ulutas K , MenderesA, KaracaC et al.: Repair of cartilage defects with periosteal grafts. Br. J. Plast. Surg.58, 65–72 (2005).
  • Carranza-Bencano A , Perez-TinaoM, Ballesteros-VazquezP et al.: Comparative study of the reconstruction of articular cartilage defects with free costal perichondrial grafts and free tibial periosteal grafts: an experimental study on rabbits. Calcif. Tissue Int.65, 402–407 (1999).
  • Sumen Y , OchiM, IkutaY: Treatment of articular defects with meniscal allografts in a rabbit knee model.Arthroscopy11, 185–193 (1995).
  • Evans PJ , MiniaciA, Hurtig MB: Manual punch versus power harvesting of osteochondral grafts. Arthroscopy20, 306–310 (2004).
  • Jorgensen C , GordeladzeJ, NoelD: Tissue engineering through autologous mesenchymal stem cells.Curr. Opin. Biotechnol.15, 406–410 (2004).
  • Noel D , GazitD, BouquetC et al.: Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells22, 74–85 (2004).
  • Bobacz K , ErlacherL, SmolenJ et al.: Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage. Ann. Rheum. Dis.63, 1618–1622 (2004).
  • Shapiro F , KoideS, GlimcherMJ: Cell origin and differentiation in the repair of full-thickness defects of articular cartilage.J. Bone Joint Surg. Am.75, 532–553 (1993).
  • Brittberg M , NilssonA, LindahlA et al.: Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin. Orthop. Relat. Res. 270–283 (1996).
  • Horas U , SchnettlerR, PelinkovicD et al.: Osteochondral transplantation versus autogenous chondrocyte transplantation. A prospective comparative clinical study. Chirurg71, 1090–1097 (2000).
  • Peterson L , MinasT, BrittbergM et al.: Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res.374, 212–234 (2000).
  • Bentley G , BiantLC, CarringtonRW et al.: A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J. Bone Joint Surg. Br.85, 223–230 (2003).
  • Horas U , PelinkovicD, HerrG et al.: Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J. Bone Joint Surg. Am. 85-A, 185–192 (2003).
  • Dell‘Accio F , VanlauweJ, BellemansJ et al.: Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J. Orthop. Res.21, 123–131 (2003).
  • Majumdar MK , BanksV, PelusoDP et al.: Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J. Cell Physiol.185, 98–106 (2000).
  • Sekiya I , ColterDC, ProckopDJ: BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells.Biochem. Biophys. Res. Commun.284, 411–418 (2001).
  • Sekiya I , VuoristoJT, LarsonBL et al.: In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc. Natl Acad. Sci. USA99, 4397–4402 (2002).
  • Sottile V , HalleuxC, BassilanaF et al.: Stem cell characteristics of human trabecular bone-derived cells. Bone30, 699–704 (2002).
  • Lee OK , KuoTK, ChenWM et al.: Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood103, 1669–1675 (2004).
  • Awad HA , WickhamMQ, LeddyHA et al.: Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials25, 3211–3222 (2004).
  • De Angelis L , BerghellaL, ColettaM et al.: Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell Biol.147, 869–878 (1999).
  • De Bari C , Dell‘accioF, VanlauweJ et al.: Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum.54, 1209–1221 (2006).
  • Jones EA , EnglishA, HenshawK et al.: Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum.50, 817–827 (2004).
  • Shi S , BartoldPM, MiuraM et al.: The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod. Craniofac. Res.8, 191–199 (2005).
  • De Bari C , Dell‘AccioF, LuytenFP: Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age.Arthritis Rheum.44, 85–95 (2001).
  • Wakitani S , GotoT, PinedaSJ et al.: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am.76, 579–592 (1994).
  • Imhof H , SulzbacherI, GramppS et al.: Subchondral bone and cartilage disease: a rediscovered functional unit. Invest. Radiol.35, 581–588 (2000).
  • Shao XX , HutmacherDW, HoST et al.: Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials27, 1071–1080 (2006).
  • Cancedda R , DozinB, GiannoniP et al.: Tissue engineering and cell therapy of cartilage and bone. Matrix Biol.22, 81–91 (2003).
  • Li WJ, Tuli R, Okafor C et al.: A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials26, 599–609 (2005).
  • Gao J , DennisJE, SolchagaLA et al.: Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng.8, 827–837 (2002).
  • Frosch KH , DrengkA, KrauseP et al.: Stem cell-coated titanium implants for the partial joint resurfacing of the knee. Biomaterials27, 2542–2549 (2006).
  • Wang DW , FermorB, GimbleJM et al.: Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J. Cell Physiol.204, 184–191 (2005).
  • Murtaugh LC , ZengL, ChyungJH et al.: The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev. Cell1, 411–422 (2001).
  • Rodrigo I , HillRE, BallingR et al.: Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development130, 473–482 (2003).
  • Lefebvre V , BehringerRR, de Crombrugghe B: L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage9(Suppl. A), S69–S75 (2001).
  • Akiyama H , ChaboissierMC, MartinJF et al.: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev16, 2813–2828 (2002).
  • Ikeda T , KamekuraS, MabuchiA et al.: The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum.50, 3561–3573 (2004).
  • Furumatsu T , TsudaM, TaniguchiN et al.: Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J. Biol. Chem.280, 8343–8350 (2005).
  • Kawakami Y , TsudaM, TakahashiS et al.: Transcriptional coactivator PGC-1a regulates chondrogenesis via association with Sox9. Proc. Natl Acad. Sci. USA102, 2414–2419 (2005).
  • Srivastava D , CserjesiP, OlsonEN: A subclass of bHLH proteins required for cardiac morphogenesis.Science270, 1995–1999 (1995).
  • Wolf C , ThisseC, StoetzelC et al.: The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev. Biol.143, 363–373 (1991).
  • Li L , CserjesiP, OlsonEN: Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis.Dev. Biol.172, 280–292 (1995).
  • Spicer DB, Rhee J, Cheung WL et al.: Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science272, 1476–1480 (1996).
  • Wilson-Rawls J , RheeJM, RawlsA: Paraxis is a basic helix–loop–helix protein that positively regulates transcription through binding to specific E-box elements.J. Biol. Chem.279, 37685–37692 (2004).
  • Liu Y , WatanabeH, NifujiA et al.: Overexpression of a single helix-loop-helix-type transcription factor, scleraxis, enhances aggrecan gene expression in osteoblastic osteosarcoma ROS17/2.8 cells. J. Biol. Chem.272, 29880–29885 (1997).
  • Bounpheng MA , MorrishTA, DoddsSG et al.: Negative regulation of selected bHLH proteins by eHAND. Exp. Cell Res.257, 320–331 (2000).
  • Goldring  MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. J. Cell Biochem.97, 33–44 (2006).
  • Johnstone B , HeringTM, CaplanAI et al.: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272 (1998).
  • Barry F, Boynton RE, Liu B et al.: Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268, 189–200 (2001).
  • Li WG , XuXX: The expression of N-cadherin, fibronectin during chondrogenic differentiation of MSC induced by TGF-b1.Chin. J. Traumatol.8, 349–351 (2005).
  • Goessler UR , BugertP, BiebackK et al.: In vitro analysis of the expression of TGFb -superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol. Biol. Lett.10, 345–362 (2005).
  • Jin EJ , ParkJH, LeeSY et al.: Wnt-5a is involved in TGF-b3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int. J. Biochem. Cell Biol.38, 183–195 (2006).
  • Pizette S , NiswanderL: BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes.Dev. Biol.219, 237–249 (2000).
  • Brunet LJ , McMahonJA, McMahonAP et al.: Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science280, 1455–1457 (1998).
  • Yoon BS , OvchinnikovDA, YoshiiI et al.: BmpR1a and BmpR1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl Acad. Sci. USA102, 5062–5067 (2005).
  • Hills RL , BelangerLM, MorrisEA: Bone morphogenetic protein 9 is a potent anabolic factor for juvenile bovine cartilage, but not adult cartilage.J. Orthop. Res.23, 611–617 (2005).
  • Palmer GD , SteinertA, PascherA et al.: Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol. Ther.12, 219–228 (2005).
  • Knippenberg M , HelderMN, Zandieh Doulabi B et al.: Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem. Biophys. Res. Commun.342(3), 902–908 (2006).
  • Hatakeyama Y , NguyenJ, WangX et al.: Smad signaling in mesenchymal and chondroprogenitor cells. J. Bone Joint Surg. Am. 85-A(Suppl. 3), 13–18 (2003).
  • Chhabra A , ZijerdiD, ZhangJ et al.: BMP-14 deficiency inhibits long bone fracture healing: a biochemical, histologic, and radiographic assessment. J. Orthop. Trauma19, 629–634 (2005).
  • Liu Z , XuJ, ColvinJS et al.: Co-ordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev.16, 859–869 (2002).
  • Enomoto -Iwamoto M , NakamuraT, AikawaT et al.: Hedgehog proteins stimulate chondrogenic cell differentiation and cartilage formation. J. Bone Miner. Res.15, 1659–1668 (2000).
  • Stevens MM , MariniRP, MartinI et al.: FGF-2 enhances TGF-b1-induced periosteal chondrogenesis. J. Orthop. Res.22, 1114–1119 (2004).
  • Mizuta H, Kudo S, Nakamura E et al.: Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage. Osteoarthritis Cartilage12, 586–596 (2004).
  • Baddoo M , HillK, WilkinsonR et al.: Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell Biochem.89, 1235–1249 (2003).
  • Davidson D , BlancA, FilionD et al.: Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J. Biol. Chem.280, 20509–20515 (2005).
  • Guo X , DayTF, JiangX et al.: Wnt/b-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev.18, 2404–2417 (2004).
  • Boyden LM , MaoJ, BelskyJ et al.: High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346, 1513–1521 (2002).
  • Church V , NohnoT, LinkerC et al.: Wnt regulation of chondrocyte differentiation. J. Cell Sci.115, 4809–4818 (2002).
  • Tufan AC , DaumerKM, DeLiseAM et al.: AP-1 transcription factor complex is a target of signals from both WnT-7a and N-cadherin-dependent cell-cell adhesion complex during the regulation of limb mesenchymal chondrogenesis. Exp. Cell Res.273, 197–203 (2002).
  • Rudnicki JA , BrownAM: Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro.Dev. Biol.185, 104–118 (1997).
  • Fischer L, Boland G, Tuan RS: Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J BiolChem277, 30870–30878 (2002).
  • Hwang SG, Yu SS, Lee SW et al.: Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett.579, 4837–4842 (2005).
  • Gelse K , von der Mark K, Aigner T et al.: Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum48, 430–441 (2003).
  • Grande DA , MasonJ, LightE et al.: Stem cells as platforms for delivery of genes to enhance cartilage repair. J. Bone Joint Surg. Am. 85-A Suppl. 2, 111–116 (2003).
  • Mattioli-Belmonte M , GiganteA, MuzzarelliRA et al.: N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med. Biol. Eng. Comput.37, 130–134 (1999).
  • Magne D , VinatierC, JulienM et al.: Mesenchymal stem cell therapy to rebuild cartilage. Trends Mol. Med.11, 519–526 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.