122
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of Cyclophilin A in HIV Replication

, &
Pages 65-78 | Published online: 20 Dec 2006

Bibliography

  • Sorin M , KalpanaGV: Dynamics of virus–host interplay in HIV-1 replication.Curr. HIV Res.4(2), 117–130 (2006).
  • Ott DE : Potential roles of cellular proteins in HIV-1.Rev. Med. Virol.12(6), 359–374 (2002).
  • Ott DE : Cellular proteins in HIV virions.Rev. Med. Virol.7(3), 167–180 (1997).
  • Pornillos O , GarrusJE, SundquistWI: Mechanisms of enveloped RNA virus budding.Trends Cell Biol.12(12), 569–579 (2002).
  • Morita E , SundquistWI: Retrovirus budding.Annu. Rev. Cell Dev. Biol.20, 395–425 (2004).
  • Demirov DG , FreedEO: Retrovirus budding.Virus Res.106(2), 87–102 (2004).
  • Klinger PP , SchubertU: The ubiquitin–proteasome system in HIV replication: potential targets for antiretroviral therapy.Expert Rev. Anti-Infect. Ther.3(1), 61–79 (2005).
  • Martin-Serrano J , ZangT, BieniaszPD: Role of ESCRT-I in retroviral budding.J. Virol.77(8), 4794–4804 (2003).
  • von Schwedler UK , StuchellM, MullerBet al.: The protein network of HIV budding.Cell114(6), 701–713 (2003).
  • Garrus JE , von SchwedlerUK, PornillosOWet al.: Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding.Cell107(1), 55–65 (2001).
  • Martin-Serrano J , ZangT, BieniaszPD: HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress.Nat. Med.7(12), 1313–1319 (2001).
  • Myers EL , AllenJF: Tsg101, an inactive homologue of ubiquitin ligase e2, interacts specifically with human immunodeficiency virus type 2 Gag polyprotein and results in increased levels of ubiquitinated Gag.J. Virol.76(22), 11226–11235 (2002).
  • VerPlank L , BouamrF, LaGrassaTJet al.: Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag).Proc. Natl Acad. Sci. USA98(14), 7724–7729 (2001).
  • Babst M , OdorizziG, EstepaEJ, EmrSD: Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal Trafficking.Traffic1(3), 248–258 (2000).
  • Katzmann DJ , OdorizziG, EmrSD: Receptor downregulation and multivesicular-body sorting.Nat. Rev. Mol. Cell Biol.3(12), 893–905 (2002).
  • Amara A , LittmanDR: After Hrs with HIV.J. Cell Biol.162(3), 371–375 (2003).
  • Schnell JD , HickeL: Non-traditional functions of ubiquitin and ubiquitin-binding proteins.J. Biol. Chem.278(38), 35857–35860 (2003).
  • Perez O , HopeTJ: Cellular restriction factors affecting the early stages of HIV replication.Curr. HIV/AIDS Rep.3(1), 20–25 (2006).
  • Sheehy AM , GaddisNC, ChoiJD, MalimMH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein.Nature418(6898), 646–650 (2002).
  • Navarro F , LandauNR: Recent insights into HIV-1 Vif.Curr. Opin. Immunol.16(4), 477–482 (2004).
  • Rose KM , MarinM, KozakSL, KabatD: The viral infectivity factor (Vif) of HIV-1 unveiled.Trends Mol. Med.10(6), 291–297 (2004).
  • Schrofelbauer B , YuQ, LandauNR: New insights into the role of Vif in HIV-1 replication.AIDS Rev.6(1), 34–39 (2004).
  • Vartanian JP , SommerP, Wain-HobsonS: Death and the retrovirus.Trends Mol. Med.9(10), 409–413 (2003).
  • Harris RS , LiddamentMT: Retroviral restriction by APOBEC proteins.Nat. Rev. Immunol.4(11), 868–877 (2004).
  • Cullen BR : Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors.J. Virol.80(3), 1067–1076 (2006).
  • Chiu YL , GreeneWC: Multifaceted antiviral actions of APOBEC3 cytidine deaminases.Trends Immunol.27(6), 291–297 (2006).
  • Harris RS , BishopKN, SheehyAMet al.: DNA deamination mediates innate immunity to retroviral infection.Cell113(6), 803–809 (2003).
  • Mangeat B , TurelliP, CaronG, FriedliM, PerrinL, TronoD: Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts.Nature424(6944), 99–103 (2003).
  • Mehle A , GoncalvesJ, Santa-MartaM, McPikeM, GabuzdaD: Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation.Genes Dev.18(23), 2861–2866 (2004).
  • Stopak K , de NoronhaC, YonemotoW, GreeneWC: HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability.Mol. Cell12(3), 591–601 (2003).
  • Yu Y , XiaoZ, EhrlichES, YuX, YuXF: Selective assembly of HIV-1 Vif–Cul5–ElonginB–ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines.Genes Dev.18(23), 2867–2872 (2004).
  • Yu X , YuY, LiuBet al.: Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif–Cul5–SCF complex.Science302(5647), 1056–1060 (2003).
  • Stremlau M , OwensCM, PerronMJ, KiesslingM, AutissierP, SodroskiJ: The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys.Nature427(6977), 848–853 (2004).
  • Bieniasz PD : Intrinsic immunity: a front-line defense against viral attack.Nat. Immunol.5(11), 1109–1115 (2004).
  • Towers GJ : Control of viral infectivity by tripartite motif proteins.Hum. Gene Ther.16(10), 1125–1132 (2005).
  • Sokolskaja E , LubanJ: Cyclophilin, TRIM5, and innate immunity to HIV-1.Curr. Opin. Microbiol. (2006).
  • Handschumacher RE , HardingMW, RiceJ, DruggeRJ, SpeicherDW: Cyclophilin: a specific cytosolic binding protein for cyclosporin A.Science226(4674), 544–547 (1984).
  • Ivery MT : Immunophilins: switched on protein binding domains?Med. Res. Rev.20(6), 452–484 (2000).
  • Braaten D , LubanJ: Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells.EMBO J.20(6), 1300–1309 (2001).
  • Colgan J , AsmalM, LubanJ: Isolation, characterization and targeted disruption of mouse ppia: cyclophilin A is not essential for mammalian cell viability.Genomics68(2), 167–178 (2000).
  • Luban J : Absconding with the chaperone: essential cyclophilin–Gag interaction in HIV-1 virions.Cell87(7), 1157–1159 (1996).
  • Towers GJ , HatziioannouT, CowanS, GoffSP, LubanJ, BieniaszPD: Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors.Nat. Med.9(9), 1138–1143 (2003).
  • Sayah DM , SokolskajaE, BerthouxL, LubanJ: Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1.Nature430(6999), 569–573 (2004).
  • Luban J , BossoltKL, FrankeEK, KalpanaGV, GoffSP: Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B.Cell73(6), 1067–1078 (1993).
  • Franke EK , YuanHE, LubanJ: Specific incorporation of cyclophilin A into HIV-1 virions.Nature372(6504), 359–362 (1994).
  • Thali M , BukovskyA, KondoEet al.: Functional association of cyclophilin A with HIV-1 virions.Nature372(6504), 363–365 (1994).
  • Ott DE , CorenLV, JohnsonDG, Sowder RCII, ArthurLO, HendersonLE: Analysis and localization of cyclophilin A found in the virions of human immunodeficiency virus type 1 MN strain.AIDS Res. Hum. Retroviruses11(9), 1003–1006 (1995).
  • Colgan J , YuanHE, FrankeEK, LubanJ: Binding of the human immunodeficiency virus type 1 Gag polyprotein to cyclophilin A is mediated by the central region of capsid and requires Gag dimerization.J. Virol.70(7), 4299–4310 (1996).
  • Braaten D , FrankeEK, LubanJ: Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIVCPZGAB but not group O HIV-1 or other primate immunodeficiency viruses.J. Virol.70(7), 4220–4227 (1996).
  • Yoo S , MyszkaDG, YehC, McMurrayM, HillCP, SundquistWI: Molecular recognition in the HIV-1 capsid/cyclophilin A complex.J. Mol. Biol.269(5), 780–795 (1997).
  • Gamble TR , VajdosFF, YooSet al.: Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid.Cell87(7), 1285–1294 (1996).
  • Bristow R , ByrneJ, SquirellJet al.: Human cyclophilin has a significantly higher affinity for HIV-1 recombinant p55 than p24.J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.20(4), 334–336 (1999).
  • Braaten D , AnsariH, LubanJ: The hydrophobic pocket of cyclophilin is the binding site for the human immunodeficiency virus type 1 Gag polyprotein.J. Virol.71(3), 2107–2113 (1997).
  • Dorfman T , WeimannA, BorsettiA, WalshCT, GottlingerHG: Active-site residues of cyclophilin A are crucial for its incorporation into human immunodeficiency virus type 1 virions.J. Virol.71(9), 7110–7113 (1997).
  • Billich A , HammerschmidF, PeichlPet al.: Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus (HIV) type 1: interference with HIV protein–cyclophilin A interactions.J. Virol.69(4), 2451–2461 (1995).
  • Rosenwirth B , BillichA, DatemaRet al.: Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog.Antimicrob. Agents Chemother.38(8), 1763–1772 (1994).
  • Franke EK , LubanJ: Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag–cyclophilin A interaction.Virology222(1), 279–282 (1996).
  • Dorfman T , GottlingerHG: The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811.J. Virol.70(9), 5751–5757 (1996).
  • Bukovsky AA , WeimannA, AccolaMA, GottlingerHG: Transfer of the HIV-1 cyclophilin-binding site to simian immunodeficiency virus from Macaca mulatta can confer both cyclosporin sensitivity and cyclosporin dependence.Proc. Natl Acad. Sci. USA94(20), 10943–10948 (1997).
  • Sharp PM , BailesE, RobertsonDL, GaoF, HahnBH: Origins and evolution of AIDS viruses.Biol. Bull.196(3), 338–342 (1999).
  • Aberham C , WeberS, PharesW: Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins.J. Virol.70(6), 3536–3544 (1996).
  • Braaten D , AberhamC, FrankeEK, YinL, PharesW, LubanJ: Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A.J. Virol.70(8), 5170–5176 (1996).
  • Chatterji U , BobardtMD, StanfieldRet al.: Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in Owl monkey cells.J. Biol. Chem.280(48), 40293–40300 (2005).
  • Braaten D , FrankeEK, LubanJ: Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription.J. Virol.70(6), 3551–3560 (1996).
  • Vajdos FF , YooS, HouseweartM, SundquistWI, HillCP: Crystal structure of cyclophilin A complexed with a binding site peptide from the HIV-1 capsid protein.Protein Sci.6(11), 2297–2307 (1997).
  • Gitti RK , LeeBM, WalkerJ, SummersMF, YooS, SundquistWI: Structure of the amino-terminal core domain of the HIV-1 capsid protein.Science273(5272), 231–235 (1996).
  • Wiegers K , RutterG, SchubertU, GrattingerM, KrausslichHG: Cyclophilin A incorporation is not required for human immunodeficiency virus type 1 particle maturation and does not destabilize the mature capsid.Virology257(1), 261–274 (1999).
  • Grattinger M , HohenbergH, ThomasD, WilkT, MullerB, KrausslichHG: In vitro assembly properties of wild-type and cyclophilin-binding defective human immunodeficiency virus capsid proteins in the presence and absence of cyclophilin A.Virology257(1), 247–260 (1999).
  • Welker R , HohenbergH, TessmerU, HuckhagelC, KrausslichHG: Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1.J. Virol.74(3), 1168–1177 (2000).
  • Sherry B , ZybarthG, AlfanoMet al.: Role of cyclophilin A in the uptake of HIV-1 by macrophages and T lymphocytes.Proc. Natl Acad. Sci. USA95(4), 1758–1763 (1998).
  • Saphire AC , BobardtMD, GallayPA: Host cyclophilin A mediates HIV-1 attachment to target cells via heparans.EMBO J.18(23), 6771–6785 (1999).
  • Pushkarsky T , ZybarthG, DubrovskyLet al.: CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A.Proc. Natl Acad. Sci. USA98(11), 6360–6365 (2001).
  • Zhang YJ , HatziioannouTet al.: Envelope-dependent, cyclophilin-independent effects of glycosaminoglycans on human immunodeficiency virus type 1 attachment and infection.J. Virol.76(12), 6332–6343 (2002).
  • Yin L , BraatenD, LubanJ: Human immunodeficiency virus type 1 replication is modulated by host cyclophilin A expression levels.J. Virol.72(8), 6430–6436 (1998).
  • Ackerson B , ReyO, CanonJ, KrogstadP: Cells with high cyclophilin A content support replication of human immunodeficiency virus type 1 Gag mutants with decreased ability to incorporate cyclophilin A.J. Virol.72(1), 303–308 (1998).
  • Kootstra NA , MunkC, TonnuN, LandauNR, VermaIM: Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells.Proc. Natl Acad. Sci. USA100(3), 1298–1303 (2003).
  • Sokolskaja E , SayahDM, LubanJ: Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity.J. Virol.78(23), 12800–12808 (2004).
  • Hatziioannou T , Perez-CaballeroD, CowanS, BieniaszPD: Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells.J. Virol.79(1), 176–183 (2005).
  • Goff SP : Retrovirus restriction factors.Mol. Cell16(6), 849–59 (2004).
  • Goff SP : Genetic control of retrovirus susceptibility in mammalian cells.Annu. Rev. Genet.38, 61–85 (2004).
  • Baumann JG : Intracellular restriction factors in mammalian cells – an ancient defense system finds a modern foe.Curr. HIV Res.4(2), 141–168 (2006).
  • Hatziioannou T , CowanS, GoffSP, BieniaszPD, TowersGJ: Restriction of multiple divergent retroviruses by Lv1 and Ref1.EMBO J.22(3), 385–394 (2003).
  • Besnier C , TakeuchiY, TowersG: Restriction of lentivirus in monkeys.Proc. Natl Acad. Sci. USA99(18), 11920–11925 (2002).
  • Cowan S , HatziioannouT, CunninghamT, MuesingMA, GottlingerHG, BieniaszPD: Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism.Proc. Natl Acad. Sci. USA99(18), 11914–11919 (2002).
  • Munk C , BrandtSM, LuceroG, LandauNR: A dominant block to HIV-1 replication at reverse transcription in simian cells.Proc. Natl Acad. Sci. USA99(21), 13843–13848 (2002).
  • Towers G , BockM, MartinS, TakeuchiY, StoyeJP, DanosO: A conserved mechanism of retro Virus Res. triction in mammals.Proc. Natl Acad. Sci. USA97(22), 12295–12299 (2000).
  • Towers G , CollinsM, TakeuchiY: Abrogation of Ref1 retrovirus restriction in human cells.J. Virol.76(5), 2548–2550 (2002).
  • Hatziioannou T , Perez-CaballeroD, YangA, CowanS, BieniaszPD: Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5α.Proc. Natl Acad. Sci. USA101(29), 10774–10779 (2004).
  • Perron MJ , StremlauM, SongB, UlmW, MulliganRC, SodroskiJ: TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells.Proc. Natl Acad. Sci. USA101(32), 11827–11832 (2004).
  • Keckesova Z , YlinenLM, TowersGJ: The human and African green monkey TRIM5α genes encode Ref1 and Lv1 retroviral restriction factor activities.Proc. Natl Acad. Sci. USA101(29), 10780–10785 (2004).
  • Yap MW , NisoleS, LynchC, StoyeJP: Trim5α protein restricts both HIV-1 and murine leukemia virus.Proc. Natl Acad. Sci. USA101(29), 10786–10791 (2004).
  • Reymond A , MeroniG, FantozziAet al.: The tripartite motif family identifies cell compartments.EMBO J.20(9), 2140–2151 (2001).
  • Stremlau M , PerronM, WelikalaS, SodroskiJ: Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction.J. Virol.79(5), 3139–3145 (2005).
  • Yap MW , NisoleS, StoyeJP: A single amino acid change in the SPRY domain of human Trim5α leads to HIV-1 restriction.Curr. Biol.15(1), 73–78 (2005).
  • Sawyer SL , WuLI, EmermanM, MalikHS: Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain.Proc. Natl Acad. Sci. USA102(8), 2832–2837 (2005).
  • Perez-Caballero D , HatziioannouT, YangA, CowanS, BieniaszPD: Human tripartite motif 5α domains responsible for retrovirus restriction activity and specificity.J. Virol.79(14), 8969–8978 (2005).
  • Nakayama EE , MiyoshiH, NagaiY, ShiodaT: A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5α determines species-specific restriction of simian immunodeficiency virus SIVmac infection.J. Virol.79(14), 8870–8877 (2005).
  • Javanbakht H , Diaz-GrifferoF, StremlauM, SiZ, SodroskiJ: The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5α.J. Biol. Chem.280(29), 26933–26940 (2005).
  • Sayah DM , LubanJ: Selection for loss of Ref1 activity in human cells releases human immunodeficiency virus type 1 from cyclophilin A dependence during infection.J. Virol.78(21), 12066–12070 (2004).
  • Berthoux L , SebastianS, SokolskajaE, LubanJ: Cyclophilin A is required for TRIM5α-mediated resistance to HIV-1 in Old World monkey cells.Proc. Natl Acad. Sci. USA102(41), 14849–14853 (2005).
  • Keckesova Z , YlinenLM, TowersGJ: Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5α antiviral activity.J. Virol.80(10), 4683–4690 (2006).
  • Hofmann W , SchubertD, LaBonteJet al.: Species-specific, postentry barriers to primate immunodeficiency virus infection.J. Virol.73(12), 10020–10028 (1999).
  • Nisole S , LynchC, StoyeJP, YapMW: A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1.Proc. Natl Acad. Sci. USA101(36), 13324–13328 (2004).
  • Sokolskaja E , BerthouxL, LubanJ: Cyclophilin A and TRIM5α independently regulate human immunodeficiency virus type 1 infectivity in human cells.J. Virol.80(6), 2855–2862 (2006).
  • Owens CM , SongB, PerronMJ, YangPC, StremlauM, SodroskiJ: Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid.J. Virol.78(10), 5423–5437 (2004).
  • Hatziioannou T , CowanS, Von SchwedlerUK, SundquistWI, BieniaszPD: Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid.J. Virol.78(11), 6005–6012 (2004).
  • Stremlau M , SongB, JavanbakhtH, PerronM, SodroskiJ: Cyclophilin A: An auxiliary but not necessary cofactor for TRIM5α restriction of HIV-1.Virology351, 112–120 (2006).
  • Bosco DA , EisenmesserEZ, PochapskyS, SundquistWI, KernD: Catalysis ofcis/trans isomerization in native HIV-1 capsid by human cyclophilin A.Proc. Natl Acad. Sci. USA99(8), 5247–5252 (2002).
  • Eisenmesser EZ , MilletO, LabeikovskyWet al.: Intrinsic dynamics of an enzyme underlies catalysis.Nature438(7064), 117–121 (2005).
  • Howard BR , VajdosFF, LiS, SundquistWI, HillCP: Structural insights into the catalytic mechanism of cyclophilin A.Nat. Struct. Biol.10(6), 475–481 (2003).
  • Li L , LiHS, PauzaCD, BukrinskyM, ZhaoRY: Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions.Cell Res.15(11–12), 923–934 (2005).
  • Le Rouzic E , BenichouS: The Vpr protein from HIV-1: distinct roles along the viral life cycle.RetroVirology2(1), 11 (2005).
  • Gibbs JS , LacknerAA, LangSMet al.: Progression to AIDS in the absence of a gene for vpr or vpx.J. Virol.69(4), 2378–2383 (1995).
  • Lang SM , WeegerM, Stahl-HennigCet al.: Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus.J. Virol.67(2), 902–912 (1993).
  • Bruns K , FossenT, WrayV, HenkleinP, TessmerU, SchubertU: Structural characterization of the HIV-1 Vpr N terminus: evidence of cisl trans-proline isomerism.J. Biol. Chem.278(44), 43188–43201 (2003).
  • Zander K , ShermanMP, TessmerUet al.: Cyclophilin A interacts with HIV-1 Vpr and is required for its functional expression.J. Biol. Chem.278(44), 43202–43213 (2003).
  • Ardon O , ZimmermanES, AndersenJL, DehartJL, BlackettJ, PlanellesV: Induction of G2 arrest and binding to cyclophilin a are independent phenotypes of human immunodeficiency virus type 1 vpr.J. Virol.80(8), 3694–3700 (2006).
  • Colgan J , AsmalM, YuB, LubanJ: Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine.J. Immunol.174(10), 6030–6038 (2005).
  • Cron RQ : HIV-1, NFAT, and cyclosporin: immunosuppression for the immunosuppressed?DNA Cell Biol.20(12), 761–7 (2001).
  • Argyropoulos C , MouzakiA: Immunosuppressive drugs in HIV disease.Curr. Top. Med. Chem.6(16), 1769–1789 (2006).
  • Martin LN , Murphey-CorbM, MackPet al.: Cyclosporin A modulation of early virologic and immunologic events during primary simian immunodeficiency virus infection in rhesus monkeys.J. Infect. Dis.176(2), 374–383 (1997).
  • Schindler M , MunchJ, KutschOet al.: Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1.Cell125(6), 1055–1067 (2006).
  • Andrieu JM , EvenP, VenetAet al.: Effects of cyclosporin on T-cell subsets in human immunodeficiency virus disease.Clin. Immunol. Immunopathol.47(2), 181–198 (1988).
  • Levy R , JaisJP, TouraniJM, EvenP, AndrieuJM: Long-term follow-up of HIV positive asymptomatic patients having received cyclosporin A.Adv. Exp. Med. Biol.374, 229–234 (1995).
  • Phillips A , WainbergMA, CoatesRet al.: Cyclosporine-induced deterioration in patients with AIDS.CMAJ140(12), 1456–1460 (1989).
  • Clavel F , HanceAJ: HIV drug resistance.N. Engl. J. Med.350(10), 1023–1035 (2004).
  • Ingulli E , TejaniA, FikrigS, NicastriA, ChenCK, PomrantzA: Nephrotic syndrome associated with acquired immunodeficiency syndrome in children.J. Pediatr.119(5), 710–716 (1991).
  • Tourne L , DurezP, VanVooren JPet al.: Alleviation of HIV-associated psoriasis and psoriatic arthritis with cyclosporine.J. Am. Acad. Dermatol.37(3 Pt 1), 501–502 (1997).
  • Caselli D , MaccabruniA, BeluffiG, MinoliL: Cyclosporine for rectoperineal fistula in a human immunodeficiency virus-infected child.J. Pediatr. Gastroenterol. Nutr.28(3), 333–335 (1999).
  • Griffiths JK : Successful long-term use of cyclosporin A in HIV-induced pityriasis lichenoides chronica.J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.18(4), 396–397 (1998).
  • Calabrese LH , LedermanMM, SpritzlerJet al.: Placebo-controlled trial of cyclosporin-A in HIV-1 disease: implications for solid organ transplantation.J. Acquir. Immune Defic. Syndr.29(4), 356–362 (2002).
  • Rizzardi GP , HarariA, CapiluppiBet al.: Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy.J. Clin. Invest.109(5), 681–688 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.