86
Views
0
CrossRef citations to date
0
Altmetric
Review

Biology of Papillomavirus Replication in Infected Epithelium

&
Pages 573-586 | Published online: 31 Oct 2007

Bibliography

  • Terai M , DeSalleR, BurkRD: Lack of canonical E6 and E7 open reading frames in bird papillomaviruses: Fringilla coelebs papillomavirus and Psittacus erithacus timneh papillomavirus.J. Virol.76(19), 10020–10023 (2002).
  • Tachezy R , RectorA, HavelkovaMet al.: Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV) genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus.BMC Microbiol.2(1), 19 (2002).
  • Gottschling M , StamatakisA, NindlIet al.: Multiple evolutionary mechanisms drive papillomavirus diversification.Mol. Biol. Evol.24(5), 1242–1258 (2007).
  • Peh WL , MiddletonK, ChristensenNet al.: Life cycle heterogeneity in animal models of human papillomavirus-associated disease.J. Virol.76(20), 10401–10416 (2002).
  • Middleton K , PehW, SouthernSet al.: Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers.J. Virol.77(19), 10186–10201 (2003).
  • Doorbar J : Molecular biology of human papillomavirus infection and cervical cancer.Clin. Sci. (Lond)110(5), 525–541 (2006).
  • Hebner CM , LaiminsLA: Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity.Rev. Med. Virol.16(2), 83–97 (2006).
  • Doorbar J : The papillomavirus life cycle.J. Clin. Virol.32 (Suppl. 1), S7–S15 (2005).
  • Egawa K : Do human papillomaviruses target epidermal stem cells?Dermatology207(3), 251–254 (2003).
  • Day PM , LowyDR, SchillerJT: Papillomaviruses infect cells via a clathrin-dependent pathway.Virology307(1), 1–11 (2003).
  • Ustav M , StenlundA: Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames.Embo J.10(2), 449–457 (1991).
  • Chiang CM , UstavM, StenlundAet al.: Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins.Proc. Natl Acad. Sci. USA89(13), 5799–5803 (1992).
  • Yang L , LiR, MohrIJ, ClarkR, otchanMR: Activation of BPV-1 replication in vitro by the transcription factor E2.Nature353(6345), 628–632 (1991).
  • Sedman J , StenlundA: Cooperative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro.Embo J.14(24), 6218–6228 (1995).
  • Yang L , MohrI, FoutsEet al.: The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase.Proc. Natl Acad. Sci. USA90(11), 5086–5090 (1993).
  • Seo YS , MullerF, LuskyM, HurwitzJ: Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication.Proc. Natl Acad. Sci. USA90(2), 702–706 (1993).
  • Sedman J , StenlundA: The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities.J. Virol.72(8), 6893–6897 (1998).
  • Sedman J , StenlundA: The initiator protein E1 binds to the bovine papillomavirus origin of replication as a trimeric ring-like structure.Embo J.15(18), 5085–5092 (1996).
  • Stenlund A : E1 initiator DNA binding specificity is unmasked by selective inhibition of nonspecific DNA binding.Embo J.22(4), 954–963 (2003).
  • Mohr IJ , ClarkR, SunSet al.: Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator.Science250(4988), 1694–1699 (1990).
  • Seo YS , MullerF, LuskyMet al.: Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin.Proc. Natl Acad. Sci. USA90(7), 2865–2869 (1993).
  • Sedman T , SedmanJ, StenlundA: Binding of the E1 and E2 proteins to the origin of replication of bovine papillomavirus.J. Virol.71(4), 2887–2896 (1997).
  • Hawley-Nelson P , AndrophyEJ, LowyDR, SchillerJT: The specific DNA recognition sequence of the bovine papillomavirus E2 protein is an E2-dependent enhancer.Embo J.7(2), 525–531 (1988).
  • Hirochika H , HirochikaR, BrokerTR, ChowLT: Functional mapping of the human papillomavirus type 11 transcriptional enhancer and its interaction with the trans-acting E2 proteins.Genes Dev.2(1), 54–67 (1988).
  • McBride AA , SchlegelR, HowleyPM: The carboxy-terminal domain shared by the bovine papillomavirus E2 transactivator and repressor proteins contains a specific DNA binding activity.Embo J.7(2), 533–539 (1988).
  • Li R , KnightJ, BreamG, StenlundA, BotchanM: Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome.Genes Dev.3(4), 510–526 (1989).
  • Lusky M , HurwitzJ, SeoYS: Cooperative assembly of the bovine papilloma virus E1 and E2 proteins on the replication origin requires an intact E2 binding site.J. Biol. Chem.268(21), 15795–15803 (1993).
  • Lusky M , HurwitzJ, SeoYS: The bovine papillomavirus E2 protein modulates the assembly of but is not stably maintained in a replication-competent multimeric E1-replication origin complex.Proc. Natl Acad. Sci. USA91(19), 8895–8899 (1994).
  • Schuck S , StenlundA: Assembly of a double hexameric helicase.Mol. Cell.20(3), 377–389 (2005).
  • Schuck S , StenlundA: ATP-dependent minor groove recognition of TA base pairs is required for template melting by the E1 initiator protein.J. Virol.81(7), 3293–3302 (2007).
  • Enemark EJ , StenlundA, Joshua-TorL: Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex.Embo J.21(6), 1487–1496 (2002).
  • Sanders CM , StenlundA: Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor.Embo J.17(23), 7044–7055 (1998).
  • Lin BY , MakhovAM, GriffithJD, BrokerTR, ChowLT: Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein.Mol. Cell. Biol22(18), 6592–6604 (2002).
  • Han Y , LooYM, MilitelloKT, MelendyT: Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A.J. Virol.73(6), 4899–4907 (1999).
  • Loo YM , MelendyT: Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA.J. Virol.78(4), 1605–1615 (2004).
  • Hu Y , ClowerRV, MelendyT: Cellular topoisomerase I modulates origin binding by bovine papillomavirus type 1 E1.J. Virol.80(9), 4363–4371 (2006).
  • Clower RV , FiskJC, MelendyT: Papillomavirus E1 protein binds to and stimulates human topoisomerase I.J. Virol.80(3), 1584–1587 (2006).
  • Bonne-Andrea C , SantucciS, ClertantP, TillierF: Bovine papillomavirus E1 protein binds specifically DNA polymerase alpha but not replication protein A.J. Virol.69(4), 2341–2350 (1995).
  • Park P , CopelandW, YangLet al.: The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase.Proc. Natl Acad. Sci. USA91(18), 8700–8704 (1994).
  • Masterson PJ , StanleyMA, LewisAP, RomanosMA: A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit.J. Virol.72(9), 7407–7419 (1998).
  • Clower RV , HuY, MelendyT: Papillomavirus E2 protein interacts with and stimulates human topoisomerase I.Virology348(1), 13–18 (2006).
  • Donaldson MM , BonerW, MorganIM: TopBP1 regulates human papillomavirus type 16 E2 interaction with chromatin.J. Virol.81(8), 4338–4342 (2007).
  • Thain A , JenkinsO, ClarkeAR, GastonK: CpG methylation directly inhibits binding of the human papillomavirus type 16 E2 protein to specific DNA sequences.J. Virol.70(10), 7233–7235 (1996).
  • Bhattacharjee B , SenguptaS: CpG methylation of HPV 16 LCR at E2 binding site proximal to P97 is associated with cervical cancer in presence of intact E2.Virology354(2), 280–285 (2006).
  • Badal S , BadalV, Calleja-MaciasIEet al.: The human papillomavirus-18 genome is efficiently targeted by cellular DNA methylation.Virology324(2), 483–492 (2004).
  • Fields BN , KnipeD, HowleyPM: Fields Virology (3rd edition). Lippencott-Raven Publishers, Philadelphia, PA, USA (1996)
  • Gilbert DM , CohenSN: Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle.Cell50(1), 59–68 (1987).
  • Botchan M , BergL, ReynoldsJ, LuskyM: The BPV1 replication. John Wiley and Sons, Bath, UK (1986).
  • Ravnan JB , GilbertDM, Ten HagenKG, CohenSN: Random-choice replication of extrachromosomal bovine papillomavirus (BPV) molecules in heterogeneous, clonally derived BPV-infected cell lines. J. Virol.66(12), 6946–6952 (1992).
  • Hoffmann R , HirtB, BechtoldV, BeardP, RajK: Different modes of human papillomavirus DNA replication during maintenance.J. Virol.80(9), 4431–4439 (2006).
  • Thomas JT , HubertWG, RueschMN, LaiminsLA: Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes.Proc. Natl Acad. Sci. USA96(15), 8449–8454 (1999).
  • Park RB , AndrophyEJ: Genetic analysis of high-risk E6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes.J. Virol.76(22), 11359–11364 (2002).
  • Scheffner M , WernessBA, HuibregtseJM, LevineAJ, HowleyPM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53.Cell63(6), 1129–1136 (1990).
  • Lepik D , IlvesI, KristjuhanA, MaimetsT, UstavM: p53 protein is a suppressor of papillomavirus DNA amplificational replication.J. Virol.72(8), 6822–6831 (1998).
  • Ilves I , KadajaM, UstavM: Two separate replication modes of the bovine papillomavirus BPV1 origin of replication that have different sensitivity to p53.Virus Res.96(1–2), 75–84 (2003).
  • Parish JL , KowalczykA, ChenHTet al.: E2 proteins from high- and low-risk human papillomavirus types differ in their ability to bind p53 and induce apoptotic cell death.J. Virol.80(9), 4580–4590 (2006).
  • Massimi P , PimD, BertoliC, BouvardV, BanksL: Interaction between the HPV-16 E2 transcriptional activator and p53.Oncogene18(54), 7748–7754 (1999).
  • Flores ER , Allen-HoffmannBL, LeeD, LambertPF: The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle.J. Virol.74(14), 6622–6631 (2000).
  • Kim K , LambertPF: E1 protein of bovine papillomavirus 1 is not required for the maintenance of viral plasmid DNA replication.Virology293(1), 10–14 (2002).
  • Ritzi M , TillackK, GerhardtJet al.: Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein–Barr virus.J. Cell Sci.116(Pt 19), 3971–3984 (2003).
  • Hirai K , ShirakataM: Replication licensing of the EBV oriP minichromosome.Curr.Top. Microbiol. Immunol.258, 13–33 (2001).
  • Chaudhuri B , XuH, TodorovI, DuttaA, YatesJL: Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus.Proc. Natl Acad. Sci. USA98(18), 10085–10089 (2001).
  • Voitenleitner C , BotchanM: E1 protein of bovine papillomavirus type 1 interferes with E2 protein-mediated tethering of the viral DNA to mitotic chromosomes.J. Virol.76(7), 3440–3451 (2002).
  • Stubenrauch F , HummelM, IftnerT, LaiminsLA: The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes.J. Virol.74(3), 1178–1186 (2000).
  • McBride AA , OliveiraJG, McPhillipsMG: Partitioning viral genomes in mitosis: same idea, different targets.Cell Cycle5(14), 1499–1502 (2006).
  • Dao LD , DuffyA, Van TineBAet al.: Dynamic localization of the human papillomavirus type 11 origin binding protein E2 through mitosis while in association with the spindle apparatus. J. Virol.80(10), 4792–4800 (2006).
  • Yu T , PengYC, AndrophyEJ: Mitotic kinesin-like protein 2 binds and colocalizes with papillomavirus E2 during mitosis.J. Virol.81(4), 1736–1745 (2007).
  • Parish JL , BeanAM, ParkRB, AndrophyEJ: ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance.Mol. Cell.24(6), 867–876 (2006).
  • Ozbun MA , MeyersC: Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b.J. Virol.72(4), 2715–2722 (1998).
  • Hummel M , HudsonJB, LaiminsLA: Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes.J.Virol66, 6070–6080 (1992).
  • Hummel M , LimHB, LaiminsLA: Human papillomavirus type 31b late gene expression is regulated through protein kinase C-mediated changes in RNA processing.J. Virol.69, 3381–3388 (1995).
  • Grassmann K , RappB, MaschekH, PetryKU, IftnerT: Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J. Virol.70, 2339–2349 (1996).
  • Zheng ZM , BakerCC: Papillomavirus genome structure, expression, and post-transcriptional regulation.Front Biosci.11, 2286–2302 (2006).
  • Klumpp DJ , LaiminsLA: Differentiation-induced changes in promoter usage for transcripts encoding the human papillomavirus type 31 replication protein E1.Virology257(1), 239–246 (1999).
  • Raj K , BechtoldV: Regulation of human papillomavirus gene expression. In: Recent Research and Development in Virology.PandalaiSG (Ed.)Transworld Research Network, Kerela, India273–303 (2004).
  • Lentz MR , PakD, MohrI, BotchanMR: The E1 replication protein of bovine papillomavirus type 1 contains an extended nuclear localization signal that includes a p34cdc2 phosphorylation site.J. Virol.67(3), 1414–1423 (1993).
  • Yu JH , LinBY, DengW, BrokerTR, ChowLT: Mitogen-activated protein kinases activate the nuclear localization sequence of human papillomavirus type 11 E1 DNA helicase to promote efficient nuclear import. J. Virol.81(10), 5066–5078 (2007).
  • Deng W , LinBY, JinGet al.: Cyclin/CDK regulates the nucleocytoplasmic localization of the human papillomavirus E1 DNA helicase.J. Virol.78(24), 13954–13965 (2004).
  • Ma T , ZouN, LinBY, ChowLT, HarperJW: Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proc. Natl Acad. Sci. USA96(2), 382–387 (1999).
  • Hsu CY , MechaliF, Bonne-AndreaC: Nucleocytoplasmic shuttling of bovine papillomavirus E1 helicase downregulates viral DNA replication in S phase.J. Virol.81(1), 384–394 (2007).
  • Malcles MH , CueilleN, MechaliF, CouxO, Bonne-AndreaC: Regulation of bovine papillomavirus replicative helicase E1 by the ubiquitin-proteasome pathway. J. Virol.76(22), 11350–11358 (2002).
  • Munger K , WernessBA, DysonNet al.: Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product.Embo J.8(13), 4099–4105 (1989).
  • Scheffner M , MungerK, ByrneJC, HowleyPM: The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines.Proc. Natl Acad. Sci. USA88(13), 5523–5527 (1991).
  • Mantovani F , BanksL: The human papillomavirus E6 protein and its contribution to malignant progression.Oncogene20(54), 7874–7887 (2001).
  • Dostatni N , LambertPF, SousaRet al.: The functional BPV-1 E2 transactivating protein can act as a repressor by preventing formation of the initiation complex.Genes Dev.5(9), 1657–1671 (1991).
  • Desaintes C , DemeretC, GoyatS, YanivM, ThierryF: Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis.Embo J.16(3), 504–514 (1997).
  • Narechania A , TeraiM, ChenZ, DeSalleR, BurkRD: Lack of the canonical pRB-binding domain in the E7 ORF of artiodactyl papillomaviruses is associated with the development of fibropapillomas.J. Gen. Virol.85(Pt 5), 1243–1250 (2004).
  • Bechtold V , BeardP, RajK: Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA.J. Virol.77(3), 2021–2028 (2003).
  • Peh WL , BrandsmaJL, ChristensenNDet al.: The viral E4 protein is required for the completion of the cottontail rabbit papillomavirus productive cycle in vivo.J. Virol.78(4), 2142–2151 (2004).
  • Nakahara T , PehWL, DoorbarJ, LeeD, LambertPF: Human papillomavirus type 16 E1^E4 contributes to multiple facets of the papillomavirus life cycle.J. Virol.79(20), 13150–13165 (2005).
  • Wilson R , FehrmannF, LaiminsLA: Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31.J. Virol.79(11), 6732–6740 (2005).
  • Wilson R , RyanGB, KnightGL, LaiminsLA, RobertsS: The full-length E1–E4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression. Virology362(2), 453–460 (2007).
  • Genther SM , SterlingS, DuensingSet al.: Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle.J. Virol.77(5), 2832–2842 (2003).
  • Fehrmann F , KlumppDJ, LaiminsLA: Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation.J. Virol.77(5), 2819–2831 (2003).
  • DeMasi J , HuhKW, NakataniY, MungerK, HowleyPM: Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding.Proc. Natl Acad. Sci. USA102(32), 11486–11491 (2005).
  • Huh KW , DeMasiJ, OgawaHet al.: Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600.Proc. Natl Acad. Sci. USA102(32), 11492–11497 (2005).
  • Flores ER , LambertPF: Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle.J. Virol.71(10), 7167–7179 (1997).
  • Schwartz S : Regulation of human papillomavirus late gene expression.Ups. J. Med. Sci.105(3), 171–192 (2000).
  • Zhou J , LiuWJ, PengSW, SunXY, FrazerI: Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability.J. Virol.73(6), 4972–4982 (1999).
  • Zhao KN , LiuWJ, FrazerIH: Codon usage bias and A+T content variation in human papillomavirus genomes.Virus Res.98(2), 95–104 (2003).
  • Day PM , RodenRBS, LowyDR, SchillerJT: The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J. Virol.72(1), 142–150 (1998).
  • Zhao KN , HengstK, LiuWJet al.: BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions.Virology272(2), 382–393 (2000).
  • Florin L , SappC, StreeckRE, SappM: Assembly and translocation of papillomavirus capsid proteins.J. Virol.76(19), 10009–10014 (2002).
  • Holmgren SC , PattersonNA, OzbunMA, LambertPF: The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle.J. Virol.79(7), 3938–3948 (2005).
  • Finnen RL , EricksonKD, ChenXS, GarceaRL: Interactions between papillomavirus L1 and L2 capsid proteins. J. Virol.77(8), 4818–4826 (2003).
  • Egawa K , IftnerA, DoorbarJ, HondaY, IftnerT: Synthesis of viral DNA and late capsid protein L1 in parabasal spinous cell layers of naturally occurring benign warts infected with human papillomavirus type 1.Virology268(2), 281–293 (2000).
  • Doorbar J , FooC, ColemanNet al.: Characterization of events during the late stages of HPV16 infection in vivo using high-affinity synthetic Fabs to E4.Virology238(1), 40–52 (1997).
  • Nicholls P , DoorbarJ, MooreRWet al.: Detection of viral DNA and E4 protein in basal keratinocytes of experimental canine oral papillomavirus lesions.Virology283, 82–98 (2001).
  • Pfister H : Chapter 8: Human papillomavirus and skin cancer.J. Natl Cancer Inst. Monogr. (31), 52–56 (2003).
  • Antonsson A , KaranfilovskaS, LindqvistPG, HanssonBG: General acquisition of human papillomavirus infections of skin occurs in early infancy. J. Clin. Microbiol.41(6), 2509–2514 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.