88
Views
0
CrossRef citations to date
0
Altmetric
Review

Future of RNAi-Based Therapies for Human Papillomavirus-Associated Cervical Cancer

, , &
Pages 587-595 | Published online: 31 Oct 2007

Bibliography

  • Parkin DM , BrayF: Chapter 2: The burden of HPV-related cancers.Vaccine24(Suppl. 3), S11–S25 (2006).
  • Parkin DM : The global health burden of infection-associated cancers in the year 2002.Int. J. Cancer118, 3030–3044 (2006).
  • zur Hausen H : Papillomaviruses and cancer: from basic studies to clinical application.Nat. Rev. Cancer2, 342–350 (2002).
  • Hudelist G , ManaviM, PischingerKIet al.: Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: different levels of viral integration are correlated with lesion grade. Gynecol. Oncol.92, 873–880 (2004).
  • Goodwin EC , DiMaioD: Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways.Proc. Natl Acad. Sci. USA97, 12513–12518 (2000).
  • Munger K , WernessBA, DysonN, PhelpsWC, HarlowE, HowleyPM: Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J.8, 4099–4105 (1989).
  • von Knebel Doeberitz M , OltersdorfT, SchwarzE, GissmannL: Correlation of modified human papilloma virus early gene expression with altered growth properties in C4–1 cervical carcinoma cells.Cancer Res.48, 3780–3786 (1988).
  • Narisawa-Saito M , KiyonoT: Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins.Cancer Sci.98(10), 1505–1511 (2007).
  • Scheffner M , WhitakerNJ: Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system.Semin. Cancer Biol.13, 59–67 (2003).
  • Putral LN , BywaterMJ, GuWet al.: RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol. Pharmacol.68, 1311–1319 (2005).
  • Gu W , PutralL, HengstKet al.: Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther.13, 1023–1032 (2006).
  • Tang S , TaoM, McCoyJPJr, ZhengZM: The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J. Virol.80, 4249–4263 (2006).
  • Hamada K , ShirakawaT, GotohA, RothJA, FollenM: Adenovirus-mediated transfer of human papillomavirus 16 E6/E7 antisense RNA and induction of apoptosis in cervical cancer.Gynecol. Oncol.103, 820–830 (2006).
  • Choo CK , LingMT, SuenCK, ChanKW, KwongYL: Retrovirus-mediated delivery of HPV16 E7 antisense RNA inhibited tumorigenicity of CaSki cells.Gynecol. Oncol.78, 293–301 (2000).
  • Lappalainen K , UrttiA, JaaskelainenI, SyrjanenK, SyrjanenS: Cationic liposomes mediated delivery of antisense oligonucleotides targeted to HPV 16 E7 mRNA in CaSki cells.Antiviral Res.23, 119–130 (1994).
  • Lappalainen K , PirilaL, JaaskelainenI, SyrjanenK, SyrjanenS: Effects of liposomal antisense oligonucleotides on mRNA and protein levels of the HPV 16 E7 oncogene.Anticancer Res.16, 2485–2492 (1996).
  • Alvarez-Salas LM , Benitez-HessML, DiPaoloJA: Advances in the development of ribozymes and antisense oligodeoxynucleotides as antiviral agents for human papillomaviruses.Antivir. Ther.8, 265–278 (2003).
  • Chen Z , KamathP, ZhangS, WeilMM, ShillitoeEJ: Effectiveness of three ribozymes for cleavage of an RNA transcript from human papillomavirus type 18.Cancer Gene Ther.2, 263–271 (1995).
  • Chen Z , KamathP, ZhangS, St JohnL, Adler-StorthzK, ShillitoeEJ: Effects on tumor cells of ribozymes that cleave the RNA transcripts of human papillomavirus type 18. Cancer Gene Ther.3, 18–23 (1996).
  • Alvarez-Salas LM , CullinanAE, SiwkowskiA, HampelA, DiPaoloJA: Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc. Natl Acad. Sci. USA95, 1189–1194 (1998).
  • Hamada K , SakaueM, AlemanyRet al.: Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol. Oncol.63, 219–227 (1996).
  • Bitko V , MusiyenkoA, ShulyayevaO, BarikS: Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med.11(1), 50-55 (2004).
  • Dasgupta R , PerrimonN: Using RNAi to catch Drosophila genes in a web of interactions: insights into cancer research.Oncogene23, 8359–8365 (2004).
  • Hannon GJ , RossiJJ: Unlocking the potential of the human genome with RNA interference.Nature431, 371–378 (2004).
  • Capodici J , KarikoK, WeissmanD: Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference.J. Immunol.169, 5196–5201 (2002).
  • Jacque JM , TriquesK, StevensonM: Modulation of HIV-1 replication by RNA interference.Nature418, 435–438 (2002).
  • Filipowicz W , JaskiewiczL, KolbFA, PillaiRS: Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin Struct. Biol.15, 331–341 (2005).
  • Jiang M , MilnerJ: Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference.Oncogene21, 6041–6048 (2002).
  • Butz K , RistrianiT, HengstermannA, DenkC, ScheffnerM, Hoppe-SeylerF: siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene22, 5938–5945 (2003).
  • Hall AH , AlexanderKA: RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells.J. Virol.77, 6066–6069 (2003).
  • Yoshinouchi M , YamadaT, KizakiMet al.: In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol. Ther.8, 762–768 (2003).
  • Jiang M , MilnerJ: Selective silencing of viral gene E6 and E7 expression in HPV-positive human cervical carcinoma cells using small interfering RNAs.Methods Mol. Biol.292, 401–420 (2004).
  • Schiffelers RM , AnsariA, XuJet al.: Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res.32, E149 (2004).
  • Guo P : RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.J. Nanosci. Nanotechnol.5, 1964–1982 (2005).
  • Baigude H , McCarrollJ, YangCS, SwainPM, RanaTM: Design and creation of new nanomaterials for therapeutic RNAi. ACS Chem. Biol.2, 237–241 (2007).
  • Thurston G , McLeanJW, RizenMet al.: Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest.101, 1401–1413 (1998).
  • Nogawa M , YuasaT, KimuraSet al.: Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J. Clin. Invest.115, 978–985 (2005).
  • Chien PY , WangJ, CarbonaroDet al.: Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo.Cancer Gene Ther.12, 321–328 (2005).
  • Zimmermann TS , LeeAC, AkincAet al.: RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006).
  • Snove O Jr , RossiJJ: Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi. Genome Biol.7, 231 (2006).
  • Barik S : RNAi in moderation.Nat. Biotechnol.24, 796–797 (2006).
  • Das AT , BrummelkampTR, WesterhoutEMet al.: Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol.78, 2601–2605 (2004).
  • Tang S , TaoM, McCoyJPJr, ZhengZM: Short-term induction and long-term suppression of HPV16 oncogene silencing by RNA interference in cervical cancer cells. Oncogene25, 2094–2104 (2006).
  • Chen J , McMillanNA: Multiple signal pathways in the leukemogenesis and therapeutic implications.Leuk. Res. (2007). (Epub ahead of print).
  • Yu J , ZhangL: The transcriptional targets of p53 in apoptosis control.Biochem. Biophys. Res. Commun.331, 851–858 (2005).
  • Espinosa JM , VerdunRE, EmersonBM: p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage.Mol. Cell12, 1015–1027 (2003).
  • Braun K , EhemannV, WaldeckWet al.: HPV18 E6 and E7 genes affect cell cycle, pRB and p53 of cervical tumor cells and represent prominent candidates for intervention by use peptide nucleic acids (PNAs).Cancer Lett.209, 37–49 (2004).
  • Brummelkamp TR , FabiusAW, MullendersJet al.: An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol.2, 202–206 (2006).
  • Huh JJ , WolfJK, FightmasterDL, LotanR, FollenM: Transduction of adenovirus-mediated wild-type p53 after radiotherapy in human cervical cancer cells.Gynecol. Oncol.89, 243–250 (2003).
  • Suga S , KatoK, OhgamiTet al.: An inhibitory effect on cell proliferation by blockage of the MAPK/estrogen receptor/MDM2 signal pathway in gynecologic cancer. Gynecol. Oncol.105, 341–350 (2007).
  • Dyson N , HowleyPM, MungerK, HarlowE: The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science243, 934–937 (1989).
  • Fiedler M , Muller-HolznerE, ViertlerHPet al.: High level HPV-16 E7 oncoprotein expression correlates with reduced pRb-levels in cervical biopsies. FASEB J.18, 1120–1122 (2004).
  • Narita M , NunezS, HeardEet al.: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell113, 703–716 (2003).
  • Nevins JR : E2F: a link between the Rb tumor suppressor protein and viral oncoproteins.Science258, 424–429 (1992).
  • Alonso MM , FueyoJ, YungWK, Gomez-ManzanoC: E2F1 and telomerase: alliance in the dark side.Cell Cycle5, 930–935 (2006).
  • Olson MV , JohnsonDG, JiangHet al.: Transgenic E2F1 expression in the mouse brain induces a human-like bimodal pattern of tumors. Cancer Res.67, 4005–4009 (2007).
  • Ha WY , WuPK, KokTWet al.: Involvement of protein kinase C and E2F-5 in euxanthone-induced neurite differentiation of neuroblastoma. Int. J. Biochem. Cell Biol.38, 1393–1401 (2006).
  • Chellappan SP , HiebertS, MudryjM, HorowitzJM, NevinsJR: The E2F transcription factor is a cellular target for the Rb protein.Cell65, 1053–1061 (1991).
  • Matsushime H , EwenME, StromDKet al.: Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell71, 323–334 (1992).
  • Ewen ME , SlussHK, SherrCJ, MatsushimeH, KatoJ, LivingstonDM: Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell73, 487–497 (1993).
  • Lau WM , HoTH, HuiKM: p16(INK4A)-silencing augments DNA damage-induced apoptosis in cervical cancer cells.Oncogene (2007).
  • Menges CW , BagliaLA, LapointR, McCanceDJ: Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res.66, 5555–5559 (2006).
  • Hagemann T , BozanovicT, HooperSet al.: Molecular profiling of cervical cancer progression. Br. J. Cancer96, 321–328 (2007).
  • Priulla M , CalastrettiA, BrunoPet al.: Preferential chemosensitization of PTEN-mutated prostate cells by silencing the Akt kinase. Prostate67, 782–789 (2007).
  • Faried LS , FariedA, KanumaTet al.: Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin increases chemosensitivity of CaSki cells to paclitaxel. Eur. J. Cancer42, 934–947 (2006).
  • Beuvink I , BoulayA, FumagalliSet al.: The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell120, 747–759 (2005).
  • Iwamaru A , KondoY, IwadoEet al.: Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene26, 1840–1851 (2007).
  • Nair A , VenkatramanM, MaliekalTT, NairB, KarunagaranD: NF-κB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene22, 50–58 (2003).
  • Prusty BK , HusainSA, DasBC: Constitutive activation of nuclear factor-κB: preferntial homodimerization of p50 subunits in cervical carcinoma.Front. Biosci.10, 1510–1519 (2005).
  • Hayden MS , GhoshS: Signaling to NF-κB.Genes Dev.18, 2195–2224 (2004).
  • An HJ , ChoNH, YangHSet al.: Targeted RNA interference of phosphatidylinositol 3-kinase p110-b induces apoptosis and proliferation arrest in endometrial carcinoma cells. J. Pathol.212, 161–169 (2007).
  • Catz SD , JohnsonJL: Transcriptional regulation of Bcl-2 by nuclear factor κB and its significance in prostate cancer.Oncogene20, 7342–7351 (2001).
  • Viatour P , Bentires-AljM, ChariotAet al.: NF- κB2/p100 induces Bcl-2 expression. Leukemia17, 1349–1356 (2003).
  • Dimitrakakis C , KymionisG, DiakomanolisEet al.: The possible role of p53 and Bcl-2 and expression in cervical carcinomas and their premalignant lesions. Gynecol. Oncol.77, 129–136 (2000).
  • Lei XY , ZhongM, FengLF, ZhuBY, TangSS, LiaoDF: siRNA-mediated Bcl-2 and Bcl-xl gene silencing sensitizes human hepatoblastoma cells to chemotherapeutic drugs. Clin. Exp. Pharmacol. Physiol.34, 450–456 (2007).
  • Pandyra A , BergR, VincentM, KoropatnickJ: Combination siRNA targeting Bcl-2 antagonizes siRNA against thymidylate synthase in human tumor cell lines. J. Pharmacol. Exp. Ther.322(1), 123–132 (2007).
  • Nagamatsu K , TsuchiyaF, OgumaK, MaruyamaH, KanoR, HasegawaA: The effect of small interfering RNA (siRNA) against the Bcl-2 gene on apoptosis and chemosensitivity in a canine mammary gland tumor cell line.Res. Vet. Sci. (2007) (Epub ahead of print).
  • Zheng Y , ZhangJ, RaoZ: Ribozyme targeting HPV16 E6/E7 transcripts in cervical cancer cells suppresses cell growth and sensitizes cells to chemotherapy and radiotherapy.Cancer Biol. Ther.3, 1129–1134; discussion 1135–1126 (2004).
  • Wright TC , BoschFX, FrancoELet al.: Chapter 30: HPV vaccines and screening in the prevention of cervical cancer; conclusions from a 2006 workshop of international experts. Vaccine24(Suppl. 3) S251–S261 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.