114
Views
0
CrossRef citations to date
0
Altmetric
Review

Pathobiology of Virus Glycosylation: Implications to Disease and Prospects for Treatment

Pages 615-623 | Published online: 31 Oct 2007

Bibliography

  • Mondotte JA , LozachPY, AmaraA, GamarnikAV: Essential role of Dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation.J. Virol.81, 7136–7148 (2007).
  • Korber B , GaschenB, YusimK, ThakallapallyR, KesmirC, DetoursV: Evolutionary and immunological implications of contemporary HIV-1 variation.Br. Med. Bull.58, 19–42 (2001).
  • Wei X , DeckerJM, WangSet al.: Antibody neutralization and escape by HIV-1. Nature422, 307–312 (2003).
  • Land A , BraakmanI: Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum.Biochimie83, 783–790 (2001).
  • Slater-Handshy T , DrollDA, FanX, Di BisceglieAM, ChambersTJ: HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing.Virology319, 36–48 (2004).
  • Meunier JC , FournillierA, ChoukhiAet al.: Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex. J. Gen. Virol.80 (Pt 4), 887–896 (1999).
  • Wagner R , WolffT, HerwigA, PleschkaS, KlenkHD: Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics.J. Virol.74, 6316–6323 (2000).
  • Klenk HD , WagnerR, HeuerD, WolffT: Importance of hemagglutinin glycosylation for the biological functions of influenza virus.Virus Res.82, 73–75 (2002).
  • Baigent SJ , McCauleyJW: Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture.Virus Res.79, 177–185 (2001).
  • Tsuchiya E , SugawaraK, HongoS, MatsuzakiY, MurakiY, NakamuraK: Role of overlapping glycosylation sequons in antigenic properties, intracellular transport and biological activities of influenza A/H2N2 virus haemagglutinin. J. Gen. Virol.83, 3067–3074 (2002).
  • Tsuchiya E , SugawaraK, HongoSet al.: Effect of addition of new oligosaccharide chains to the globular head of influenza A/H2N2 virus haemagglutinin on the intracellular transport and biological activities of the molecule. J. Gen. Virol.83, 1137–1146 (2002).
  • Abe Y , TakashitaE, SugawaraK, MatsuzakiY, MurakiY, HongoS: Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J. Virol.78, 9605–9611 (2004).
  • Kaverin NV , RudnevaIA, IlyushinaNAet al.: Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J. Gen. Virol.83, 2497–2505 (2002).
  • Daniels R , KurowskiB, JohnsonAE, HebertDN: N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol. Cell11, 79–90 (2003).
  • Skehel JJ , WileyDC: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.Annu. Rev. Biochem.69, 531–569 (2000).
  • Vigerust DJ , UlettKB, BoydKL, MadsenJ, HawgoodS, McCullersJA: N-Linked glycosylation attenuates H3N2 influenza viruses.J. Virol.81, 8593–8600 (2007).
  • Deshpande KL , FriedVA, AndoM, WebsterRG: Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc. Natl Acad. Sci. USA84, 36–40 (1987).
  • Zambon MC : Epidemiology and pathogenesis of influenza.J. Antimicrob. Chemother.44(Suppl. B), S3–S9 (1999).
  • Martin-Gallardo A , FleischerE, DoyleSAet al.: Expression of the G glycoprotein gene of human respiratory syncytial virus in Salmonella typhimurium.J. Gen. Virol.74(Pt 3), 453–458 (1993).
  • Collins PL , MottetG: Oligomerization and post-translational processing of glycoprotein G of human respiratory syncytial virus: altered O-glycosylation in the presence of brefeldin A.J. Gen. Virol.73(Pt 4), 849–863 (1992).
  • Aguilar HC , MatreyekKA, FiloneCMet al.: N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J. Virol.80, 4878–4889 (2006).
  • Moll M , KaufmannA, MaisnerA: Influence of N-glycans on processing and biological activity of the Nipah virus fusion protein.J. Virol.78, 7274–7278 (2004).
  • Bossart KN , CrameriG, DimitrovASet al.: Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J. Virol.79, 6690–6702 (2005).
  • Oostra M , de HaanCA, de GrootRJ, RottierPJ: Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. J. Virol.80, 2326–2336 (2006).
  • Schowalter RM , SmithSE, DutchRE: Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low Ph.J. Virol.80(22), 10931–10941 (2006).
  • Korber B , MuldoonM, TheilerJet al.: Timing the ancestor of the HIV-1 pandemic strains. Science288, 1789–1796 (2000).
  • Fenouillet E , GluckmanJC, BahraouiE: Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1.J. Virol.64, 2841–2848 (1990).
  • Montefiori DC , RobinsonWEJr, MitchellWM: Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA85, 9248–9252 (1988).
  • Wolk T , SchreiberM: N-Glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4–3 are indispensable for viral infectivity and resistance against antibody neutralization.Med. Microbiol. Immunol. (Berl)195, 165–172 (2006).
  • Wolk T , SchreiberM: N-Glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4–3 are indispensable for viral infectivity and resistance against antibody neutralization.Med. Microbiol. Immunol.195, 165–172 (2006).
  • Bernstein HB , TuckerSP, HunterE, SchutzbachJS, CompansRW: Human immunodeficiency virus type 1 envelope glycoprotein is modified by O-linked oligosaccharides.J. Virol.68, 463–468 (1994).
  • Paulson JC : Glycoproteins: what are the sugar chains for?Trends Biochem. Sci.14, 272–276 (1989).
  • Burton DR : Antibodies, viruses and vaccines.Nat. Rev. Immunol.2, 706–713 (2002).
  • Sanders RW , VenturiM, SchiffnerLet al.: The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J. Virol.76, 7293–7305 (2002).
  • Manrique A , RusertP, JoosBet al.: In vivo and in vitro escape from neutralizing antibodies 2G12, 2F5, and 4E10. J. Virol.81, 8793–8808 (2007).
  • Calarese DA , LeeHK, HuangCYet al.: Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc. Natl Acad. Sci. USA102, 13372–13377 (2005).
  • Calarese DA , ScanlanCN, ZwickMBet al.: Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science300, 2065–2071 (2003).
  • Geijtenbeek TB , van KooykY: DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr. Top Microbiol. Immunol.276, 31–54 (2003).
  • Vigerust DJ , EganBS, ShepherdVL: HIV-1 Nef mediates post-translational down-regulation and redistribution of the mannose receptor.J. Leukoc. Biol.77, 522–534 (2005).
  • Trujillo JR , RogersR, MolinaRMet al.: Noninfectious entry of HIV-1 into peripheral and brain macrophages mediated by the mannose receptor. Proc. Natl Acad. Sci. USA104, 5097–5102 (2007).
  • Frost SD , WrinT, SmithDMet al.: Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc. Natl Acad. Sci. USA102, 18514–18519 (2005).
  • Malenbaum SE , YangD, CavaciniL, PosnerM, RobinsonJ, Cheng-MayerC: The N-terminal V3 loop glycan modulates the interaction of clade A and B human immunodeficiency virus type 1 envelopes with CD4 and chemokine receptors. J. Virol.74, 11008–11016 (2000).
  • Simmonds P : Genetic diversity and evolution of hepatitis C virus – 15 years on.J. Gen. Virol.85, 3173–3188 (2004).
  • Shirato K , MiyoshiH, GotoAet al.: Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J. Gen. Virol.85, 3637–3645 (2004).
  • Scherret JH , MackenzieJS, KhromykhAA, HallRA: Biological significance of glycosylation of the envelope protein of Kunjin virus.Ann. NY Acad. Sci.951, 361–363 (2001).
  • Beasley DW , WhitemanMC, ZhangSet al.: Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol.79, 8339–8347 (2005).
  • Lad VJ , ShendeVR, GuptaAK, KoshyAA, RoyA: Effect of tunicamycin on expression of epitopes on Japanese encephalitis virus glycoprotein E in porcine kidney cells.Acta Virol.44, 359–364 (2000).
  • Hanna SL , PiersonTC, SanchezMD, AhmedAA, MurtadhaMM, DomsRW: N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J. Virol.79, 13262–13274 (2005).
  • Bryant JE , CalvertAE, MesesanKet al.: Glycosylation of the Dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology366(2), 415–423 (2007).
  • Crabtree MB , KinneyRM, MillerBR: Deglycosylation of the NS1 protein of Dengue 2 virus, strain 16681: construction and characterization of mutant viruses.Arch Virol.150, 771–786 (2005).
  • Goffard A , CallensN, BartoschBet al.: Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J. Virol.79, 8400–8499 (2005).
  • Beyene A , BasuA, MeyerK, RayR: Influence of N-linked glycans on intracellular transport of hepatitis C virus E1 chimeric glycoprotein and its role in pseudotype virus infectivity.Virology324, 273–285 (2004).
  • Goffard A , DubuissonJ: Glycosylation of hepatitis C virus envelope proteins.Biochimie85, 295–301 (2003).
  • Falkowska E , KajumoF, GarciaE, ReinusJ, DragicT: Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization.J. Virol.81, 8072–8079 (2007).
  • Witvrouw M , FikkertV, HantsonAet al.: Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. J. Virol.79, 7777–7784 (2005).
  • Williams DC, Jr., LeeJY, CaiM, BewleyCA, CloreGM: Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from N-linked oligomannoside. J. Biol. Chem.280, 29269–29276 (2005).
  • Balzarini J , Van HerrewegeY, VermeireK, VanhamG, ScholsD: Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes. Mol. Pharmacol.71, 3–11 (2007).
  • O‘Keefe BR , SmeeDF, TurpinJAet al.: Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrob. Agents Chemother.47, 2518–2525 (2003).
  • Balzarini J : Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses?Antivir. Chem. Chemother.18, 1–11 (2007).
  • Helle F , WychowskiC, Vu-DacN, GustafsonKR, VoissetC, DubuissonJ: Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans.J. Biol. Chem.281, 25177–25183 (2006).
  • Bertaux C , DaelemansD, MeertensLet al.: Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology366(1), 40–50 (2007).
  • Keyaerts E , VijgenL, PannecouqueCet al.: Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res.75, 179–187 (2007).
  • van der Meer FJ , de HaanCA, SchuurmanNMet al.: Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Res.76, 21–29 (2007).
  • Romanelli F , SmithKM, HovenAD: Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity.Curr. Pharm. Des.10, 2643–2648 (2004).
  • Boelaert JR , SperberK, PietteJ: Chloroquine exerts an additive in vitro anti-HIV type 1 effect when associated with didanosine and hydroxyurea.AIDS Res. Hum. Retroviruses15, 1241–1247 (1999).
  • Sperber K , LouieM, KrausTet al.: Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin. Ther.17, 622–636 (1995).
  • Paton NI , AboulhabJ: Hydroxychloroquine, hydroxyurea and didanosine as initial therapy for HIV-infected patients with low viral load: safety, efficacy and resistance profile after 144 weeks.HIV Med.6, 13–20 (2005).
  • Naarding MA , BaanE, PollakisG, PaxtonWA: Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4+ T-lymphocytes. Retrovirology4, 6 (2007).
  • Vincent MJ , BergeronE, BenjannetSet al.: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J.2, 69 (2005).
  • De Clercq E : Potential antivirals and antiviral strategies against SARS coronavirus infections.Expert Rev. Anti Infect. Ther.4, 291–302 (2006).
  • Keyaerts E , VijgenL, MaesP, NeytsJ, Van RanstM: In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine.Biochem. Biophys. Res. Commun.323, 264–268 (2004).
  • Di Trani L , SavarinoA, CampitelliLet al.: Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses. Virol. J.4, 39 (2007).
  • Ooi EE , ChewJS, LohJP, ChuaRC: In vitro inhibition of human influenza A virus replication by chloroquine.Virol. J.3, 39 (2006).
  • Savarino A , Di TraniL, DonatelliI, CaudaR, CassoneA: New insights into the antiviral effects of chloroquine. Lancet Infect. Dis.6, 67–69 (2006).
  • Chapel C , GarciaC, BartoschBet al.: Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. J. Gen. Virol.88, 1133–1143 (2007).
  • Tanaka Y , KatoJ, KoharaM, GalinskiMS: Antiviral effects of glycosylation and glucose trimming inhibitors on human parainfluenza virus type 3.Antiviral Res.72, 1–9 (2006).
  • Wu SF , LeeCJ, LiaoCL, DwekRA, ZitzmannN, LinYL: Antiviral effects of an iminosugar derivative on flavivirus infections.J. Virol.76, 3596–3604 (2002).
  • Balzarini J : The alpha(1,2)-mannosidase I inhibitor 1-deoxymannojirimycin potentiates the antiviral activity of carbohydrate-binding agents against wildtype and mutant HIV-1 strains containing glycan deletions in gp120.FEBS Lett581, 2060–2064 (2007).
  • Hart ML , SaifuddinM, SpearGT: Glycosylation inhibitors and neuraminidase enhance human immunodeficiency virus type 1 binding and neutralization by mannose-binding lectin.J. Gen. Virol.84, 353–360 (2003).
  • Dwek RA , ButtersTD, PlattFM, ZitzmannN: Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discov.1, 65–75 (2002).
  • Furmanek A , HofsteengeJ: Protein C-mannosylation: facts and questions.Acta Biochim. Pol.47, 781–789 (2000).
  • Falzarano D , KrokhinO, Van DomselaarGet al.: Ebola sGP–the first viral glycoprotein shown to be C-mannosylated. Virology (Epub ahead of print) (2007).
  • Cambi A , de LangeF, van MaarseveenNMet al.: Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J. Cell Biol.164, 145–155 (2004).
  • Cambi A , FigdorCG: Dual function of C-type lectin-like receptors in the immune system.Curr. Opin. Cell Biol.15, 539–546 (2003).
  • Reading PC , MillerJL, AndersEM: Involvement of the mannose receptor in infection of macrophages by influenza virus.J. Virol.74, 5190–5197 (2000).
  • Nguyen DG , HildrethJE: Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages.Eur. J. Immunol.33, 483–493 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.