126
Views
0
CrossRef citations to date
0
Altmetric
Review

Innate Immune Signaling Pathways: Lessons from Vaccinia Virus

&
Pages 147-156 | Published online: 29 Feb 2008

Bibliography

  • Meylan E , TschoppJ, KarinM: Intracellular pattern recognition receptors in the host response.Nature442(7098) , 39–44 (2006).
  • Mogensen TH , PaludanSR: Reading the viral signature by Toll-like receptors and other pattern recognition receptors.J. Mol. Med.83(3) , 180–192 (2005).
  • Unterholzner L , BowieAG: The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities.Biochem. Pharmacol.75(3) , 589–602 (2007).
  • Meylan E , TschoppJ: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses.Mol. Cell22(5) , 561–569 (2006).
  • Seet BT , JohnstonJB, BrunettiCR et al.: Poxviruses and immune evasion. Annu. Rev. Immunol.21 , 377–423 (2003).
  • Bowie A , Kiss-TothE, SymonsJA, SmithGL, DowerSK, O‘NeillLA: A46R and A52R from vaccinia virus are antagonists of host IL-1 and Toll-like receptor signaling.Proc. Natl Acad. Sci. USA97(18) , 10162–10167 (2000).
  • Harte MT , HagaIR, MaloneyG et al.: The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med.197(3) , 343–351 (2003).
  • Stack J , HagaIR, SchroderM et al.: Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med.201(6) , 1007–1018 (2005).
  • Kawai T , AkiraS: TLR signaling.Semin. Immunol.19(1) , 24–32 (2007).
  • Kawai T , AkiraS: TLR signaling.Cell Death Differ.13(5) , 816–825 (2006).
  • Bowie AG : Translational mini-review series on Toll-like receptors: recent advances in understanding the role of Toll-like receptors in anti-viral immunity.Clin. Exp. Immunol.147(2) , 217–226 (2007).
  • Akira S , UematsuS, TakeuchiO: Pathogen recognition and innate immunity.Cell124(4) , 783–801 (2006).
  • Watters TM , KennyEF, O‘NeillLA: Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins.Immunol. Cell Biol.85(6) , 411–419 (2007).
  • O‘Neill LA , BowieAG: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.Nat. Rev. Immunol.7(5) , 353–364 (2007).
  • Carty M , GoodbodyR, SchroderM, StackJ, MoynaghPN, BowieAG: The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.Nat. Immunol.7(10) , 1074–1081 (2006).
  • Deng L , WangC, SpencerE et al.: Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell103(2) , 351–361 (2000).
  • Adhikari A , XuM, ChenZJ: Ubiquitin-mediated activation of TAK1 and IKK.Oncogene26(22) , 3214–3226 (2007).
  • O‘Neill LA : How Toll-like receptors signal: what we know and what we don‘t know.Curr. Opin. Immunol.18(1) , 3–9 (2006).
  • Sato S , SugiyamaM, YamamotoM et al.: Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κ B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol.171(8) , 4304–4310 (2003).
  • Meylan E , BurnsK, HofmannK et al.: RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κ B activation. Nat. Immunol.5(5) , 503–507 (2004).
  • Jefferies CA , FitzgeraldKA: Interferon gene regulation: not all roads lead to Tolls.Trends Mol. Med.11(9) , 403–411 (2005).
  • Uematsu S , AkiraS: Toll-like receptors and type I interferons.J. Biol. Chem.282(21) , 15319–15323 (2007).
  • Maloney G , SchroderM, BowieAG: Vaccinia virus protein A52R activates p38 mitogen-activated protein kinase and potentiates lipopolysaccharide-induced interleukin-10.J. Biol. Chem.280(35) , 30838–30844 (2005).
  • Keating SE , MaloneyGM, MoranEM, BowieAG: IRAK-2 participates in multiple Toll-like receptor signaling pathways to NFκB via activation of TRAF6 ubiquitination.J. Biol. Chem.282(46) , 33435–33443 (2007).
  • Blackburn SD , WherryEJ: IL-10, T cell exhaustion and viral persistence.Trends Microbiol.15(4) , 143–146 (2007).
  • Ejrnaes M , FilippiCM, MartinicMM et al.: Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med.203(11) , 2461–2472 (2006).
  • Brooks DG , TrifiloMJ, EdelmannKH, TeytonL, McGavernDB, OldstoneMB: Interleukin-10 determines viral clearance or persistence in vivo.Nat. Med.12(11) , 1301–1309 (2006).
  • van Den Broek M , BachmannMF, KohlerG et al.: IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-γ and nitric oxide synthetase 2. J. Immunol.164(1) , 371–378 (2000).
  • Netea MG , Van der Meer JW, Kullberg BJ: Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol.12(11) , 484–488 (2004).
  • Shisler JL , JinXL: The vaccinia virus K1L gene product inhibits host NF-κB activation by preventing IκBα degradation.J. Virol.78(7) , 3553–3560 (2004).
  • Gedey R , JinXL, HinthongO, ShislerJL: Poxviral regulation of the host NF-κB response: the vaccinia virus M2L protein inhibits induction of NF-κB activation via an ERK2 pathway in virus-infected human embryonic kidney cells.J. Virol.80(17) , 8676–8685 (2006).
  • Bartlett N , SymonsJA, TscharkeDC, SmithGL: The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence.J. Gen. Virol.83(Pt 8) , 1965–1976 (2002).
  • DiPerna G , StackJ, BowieAG et al.: Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by Toll-like receptors. J. Biol. Chem.279(35) , 36570–36578 (2004).
  • Cooray S , BaharMW, AbresciaNG et al.: Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J. Gen. Virol.88(Pt 6) , 1656–1666 (2007).
  • Aoyagi M , ZhaiD, JinC et al.: Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci.16(1) , 118–124 (2007).
  • Liu L , XuZ, FuhlbriggeRC, Pena-CruzV, LiebermanJ, KupperTS: Vaccinia virus induces strong immunoregulatory cytokine production in healthy human epidermal keratinocytes: a novel strategy for immune evasion.J. Virol.79(12) , 7363–7370 (2005).
  • Howell MD , GalloRL, BoguniewiczM et al.: Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity24(3) , 341–348 (2006).
  • Zasloff M : Antimicrobial peptides of multicellular organisms.Nature415(6870) , 389–395 (2002).
  • Zhu J , MartinezJ, HuangX, YangY: Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-β.Blood109(2) , 619–625 (2007).
  • Waibler Z , AnzagheM, LudwigH et al.: Modified vaccinia virus Ankara induces Toll-like receptor-independent type I interferon responses. J. Virol.81(22) , 12102–12110 (2007).
  • Ishii K , CobanC, KatoH et al.: A Toll-like receptor-independent antiviral response induced by double-stranded B-form of DNA. Nat. Immunol.7(1) , 40–48 (2006).
  • Benavente J , Martinez-CostasJ: Avian reovirus: structure and biology.Virus Res.123(2) , 105–119 (2007).
  • Weber F , WagnerV, RasmussenSB, HartmannR, PaludanSR: Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses.J. Virol.80(10) , 5059–5064 (2006).
  • Langland JO , JacobsBL: The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range.Virology299(1) , 133–141 (2002).
  • Romano PR , ZhangF, TanSL et al.: Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol. Cell Biol.18(12) , 7304–7316 (1998).
  • Garcia MA , GuerraS, GilJ, JimenezV, EstebanM: Anti-apoptotic and oncogenic properties of the dsRNA-binding protein of vaccinia virus, E3L.Oncogene21(55) , 8379–8387 (2002).
  • Haga IR , BowieAG: Evasion of innate immunity by vaccinia virus.Parasitology130(Suppl.) S11–S25 (2005).
  • Langland JO , KashJC, CarterV, ThomasMJ, KatzeMG, JacobsBL: Suppression of proinflammatory signal transduction and gene expression by the dual nucleic acid binding domains of the vaccinia virus E3L proteins.J. Virol.80(20) , 10083–10095 (2006).
  • Takaoka A , WangZ, ChoiMK et al.: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448(7152) , 501–505 (2007).
  • Schramm B , LockerJK: Cytoplasmic organization of POXvirus DNA replication.Traffic6(10) , 839–846 (2005).
  • Jackson SS , IlyinskiiP, PhilipponV et al.: Role of genes that modulate host immune responses in the immunogenicity and pathogenicity of vaccinia virus. J. Virol.79(10) , 6554–6559 (2005).
  • Staib C , KislingS, ErfleV, SutterG: Inactivation of the viral interleukin 1β receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara.J. Gen. Virol.86 , 1997–2006 (2005).
  • Clark RH , KenyonJC, BartlettNW, TscharkeDC, SmithGL: Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy.J. Gen. Virol.87 , 29–38 (2006).
  • Lucas A , McFaddenG: Secreted immunomodulatory viral proteins as novel biotherapeutics.J. Immunol.173(8) , 4765–4774 (2004).
  • McCoy SL , KurtzSE, MacarthurCJ, TruneDR, HefeneiderSH: Identification of a peptide derived from vaccinia virus A52R protein that inhibits cytokine secretion in response to TLR-dependent signaling and reduces in vivo bacterial-induced inflammation.J. Immunol.174(5) , 3006–3014 (2005).
  • Tsung A , McCoySL, KluneJR, GellerDA, BilliarTR, HefeneiderSH: A novel inhibitory peptide of Toll-like receptor signaling limits lipopolysaccharide-induced production of inflammatory mediators and enhances survival in mice.Shock27(4) , 364–369 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.