2,790
Views
20
CrossRef citations to date
0
Altmetric
Editorial

Phospholipase A1: structure, distribution and function

&
Pages 687-700 | Published online: 18 Jan 2017

  • Sato T, Aoki J, Nagai Y et al.: Serine phospholipid-specific phospholipase A that is secreted from activated platelets. A new member of the lipase family. J. Biol. Chem. 272, 2192–2198 (1997).
  • Pete MJ, Ross AH, Exton JH: Purification and properties of phospholipase A1 from bovine brain. J. Biol. Chem. 269, 19494–19500 (1994).
  • Higgs HN, Glomset JA: Identification of a phosphatidic acid-preferring phospholipase A1 from bovine brain and testis. Proc. Natl Acad. Sci. USA 91, 9574–9578 (1994).
  • Soldatova L, Kochoumian L, King TP: Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Lett. 320, 145–149 (1993).
  • Hirano K, Tanaka A, Yoshizumi K et al.: Properties of phospholipase A1/transacylase in the white muscle of bonito Euthynnus pelamis (Linnaeus). J. Biochem. 122, 1160–1166 (1997).
  • Watanabe I, Koishi R, Yao Y et al.: Molecular cloning and expression of the gene encoding a phospholipase A1 from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 63, 820–826 (1999).
  • Horigome K, Hayakawa M, Inoue K et al.: Purification and characterization of phospholipase A2 released from rat platelets. J. Biochem. 101, 625–631 (1987).
  • Kudo I, Murakami M, Hara S et al.: Mammalian non-pancreatic phospholipases A2. Biochim. Biophys. Acta 1170, 217–231 (1993).
  • Murakami M, Nakatani Y, Atsumi G et al.: Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17, 225–283 (1997).
  • Wong H, Schotz MC: The lipase gene family. J. Lipid Res. 43, 993–999 (2002).
  • Choi SY, Hirata K, Ishida T et al.: Endothelial lipase: a new lipase on the block. J. Lipid Res. 43, 1763–1769 (2002).
  • Aoki J, Nagai Y, Hosono H et al.: Structure and function of phosphatidylserine-specific phospholipase A1. Biochim. Biophys. Acta 1582, 26–32 (2002).
  • Sonoda H, Aoki J, Hiramatsu T et al.: A novel phosphatidic acid-selective phospholipase a1 that produces lysophosphatidic acid. J. Biol. Chem. 277, 34254–34263 (2002).
  • Hiramatsu T, Sonoda H, Takanezawa Y et al.: Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1〈 and mPA-PLA1®. J. Biol. Chem. 278, 49438–49447 (2003).
  • Tani K, Mizoguchi T, Iwamatsu A et al.: p125 is a novel mammalian Sec23p-interacting protein with structural similarity to phospholipid-modifying proteins. J. Biol. Chem. 274, 20505–20512 (1999).
  • Higgs HN, Han MH, Johnson GE et al.: Cloning of a phosphatidic acidpreferring phospholipase A1 from bovine testis. J. Biol. Chem. 273, 5468–5477 (1998).
  • Giller T, Buchwald P, Blum KD et al.: Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity. J. Biol. Chem. 267, 16509–16516 (1992).
  • Hide WA, Chan L, Li WH: Structure and evolution of the lipase superfamily. J. Lipid Res. 33, 167–178 (1992).
  • Carriere F, Withers MC, van TH et al.: Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. Biochim. Biophys. Acta 1376, 417–432 (1998).
  • Grosser J, Schrecker O, Greten H: Function of hepatic triglyceride lipase in lipoprotein metabolism. J. Lipid Res. 22, 437–442 (1981). 21. Landin B, Nilsson A, Twu JS et al.: A role for hepatic lipase in chylomicron and high density lipoprotein phospholipid metabolism. J. Lipid Res. 25, 559–563 (1984).
  • Jin W, Millar JS, Broedl U et al.: Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 111, 357–362 (2003).
  • Ishida T, Choi S, Kundu RK et al.: Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 111, 347–355 (2003).
  • Ma K, Cilingiroglu M, Otvos JD et al.: Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc. Natl Acad. Sci. USA 100, 2748–2753 (2003).
  • Homanics GE, de Silva HW, Osada J et al.: Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J. Biol. Chem. 270, 2974–2980 (1995).
  • Shamburek RD, Zech LA, Cooper PS et al.: Disappearance of two major phosphatidylcholines from plasma is predominantly via LCAT and hepatic lipase. Am. J. Physiol. 271(6 Pt 1), E1073–E1082 (1996).
  • McCoy MG, Sun GS, Marchadier D et al.: Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 43, 921–929 (2002).
  • Jaye M, Lynch KJ, Krawiec J et al.: A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21, 424–428 (1999).
  • Hirata K, Dichek HL, Cioffi JA et al.: Cloning of a unique lipase from endothelial cells extends the lipase gene family. J. Biol. Chem. 274, 14170–14175 (1999).
  • Nakajima K, Sonoda H, Mizoguchi T et al.: A novel phospholipase A1 with sequence homology to a mammalian Sec23pinteracting protein, p125. J. Biol. Chem. 277, 11329–11335 (2002).
  • Shimoi W, Ezawa I, Nakamoto K et al.: p125 is localized in endoplasmic reticulum exit sites and involved in their organization. J. Biol. Chem. 280, 10141–10148 (2005).
  • Kato T, Morita MT, Fukaki H et al.: SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14, 33–46 (2003).
  • Morita MT, Kato T, Nagafusa K et al.: Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14, 47–56 (2003).
  • Condon RE, Tobias H, Datta DV: The liver and postheparin plasma lipolytic activity in dog and man. J. Clin. Invest. 44, 860–869 (1965).
  • Jensen GL, Daggy B, Bensadoun A: Triacylglycerol lipase, monoacylglycerol lipase and phospholipase activities of highly purified rat hepatic lipase. Biochim. Biophys. Acta 710, 464–470 (1982).
  • Laboda HM, Glick JM, Phillips MC: Hydrolysis of lipid monolayers and the substrate specificity of hepatic lipase. Biochim. Biophys. Acta 876, 233–242 (1986).
  • Hjorth A, Carriere F, Cudrey C et al.: A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. Biochemistry 32, 4702–4707 (1993).
  • Fauvel J, Bonnefis MJ, Sarda L et al.: Purification of two lipases with high phospholipase A1 activity from guinea-pig pancreas. Biochim. Biophys. Acta 663, 446–456 (1981).
  • Thirstrup K, Verger R, Carriere F: Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry 33, 2748–2756 (1994).
  • Carriere F, Thirstrup K, Boel E et al.: Structure–function relationships in naturally occurring mutants of pancreatic lipase. Protein Eng. 7, 563–569 (1994).
  • Wishart MJ, Andrews PC, Nichols R et al.: Identification and cloning of GP-3 from rat pancreatic acinar zymogen granules as a glycosylated membrane-associated lipase. J. Biol. Chem. 268, 10303–10311 (1993).
  • Grusby MJ, Nabavi N, Wong H et al.: Cloning of an interleukin-4 inducible gene from cytotoxic T lymphocytes and its identification as a lipase. Cell 60, 451–459 (1990).
  • Horigome K, Hayakawa M, Inoue K et al.: Selective release of phospholipase A2 and lysophosphatidylserine-specific lysophospholipase from rat platelets. J. Biochem. 101, 53–61 (1987).
  • Nagai Y, Aoki J, Sato T et al.: An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J. Biol. Chem. 274, 11053–11059 (1999).
  • Deaciuc IV, Peng X, D’Souza NB et al.: Microarray gene analysis of the liver in a rat model of chronic, voluntary alcohol intake. Alcohol 32, 113–127 (2004).
  • van Groningen JJ, Egmond MR, Bloemers HP et al.: nmd, a novel gene differentially expressed in human melanoma cell lines, encodes a new atypical member of the enzyme family of lipases. FEBS Lett. 404, 82–86 (1997).
  • Jones ME, Lentz BR, Dombrose FA et al.: Comparison of the abilities of synthetic and platelet-derived membranes to enhance thrombin formation. Thromb. Res. 39, 711–724 (1985).
  • Schroit AJ, Madsen JW, Tanaka Y: In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J. Biol. Chem. 260, 5131–5138 (1985).
  • Bell RM, Burns DJ: Lipid activation of protein kinase C. J. Biol. Chem. 266, 4661–4664 (1991).
  • Lourenssen S, Blennerhassett MG: Lysophosphatidylserine potentiates nerve growth factor-induced differentiation of PC12 cells. Neurosci. Lett. 248, 77–80 (1998).
  • Bellini F, Bruni A: Role of a serum phospholipase A1 in the phosphatidylserine-induced T-cell inhibition. FEBS Lett. 316, 1–4 (1993).
  • Martin TW, Lagunoff D: Interactions of lysophospholipids and mast cells. Nature 279, 250–252 (1979).
  • Bruni A, Bigon E, Battistella A et al.: Lysophosphatidylserine as histamine releaser in mice and rats. Agents Actions 14, 619–625 (1984).
  • Horigome K, Tamori-Natori Y, Inoue K et al.: Effect of serine phospholipid structure on the enhancement of concanavalin A-induced degranulation in rat mast cells. J. Biochem. 100, 571–579 (1986).
  • Hosono H, Aoki J, Nagai Y et al.: Phosphatidylserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2-acyl-1-lysophosphatidylserine. J. Biol. Chem. 276, 29664–29670 (2001).
  • Sugo T, Tachimoto H, Chikatsu T et al.: Identification of a lysophosphatidylserine receptor on mast cells. Biochem. Biophys. Res. Commun. 341, 1078–1087 (2006).
  • Kawamoto K, Aoki J, Tanaka A et al.: Nerve growth factor activates mast cells through the collaborative interaction with lysophosphatidylserine expressed on the membrane surface of activated platelets. J. Immunol. 168, 6412–6419 (2002).
  • Strauss JG, Hayn M, Zechner R et al.: Fatty acids liberated from high-density lipoprotein phospholipids by endothelial-derived lipase are incorporated into lipids in HepG2 cells. Biochem. J. 371, 981–988 (2003).
  • Jaye M, Krawiec J: Endothelial lipase and HDL metabolism. Curr. Opin. Lipidol. 15, 183–189 (2004).
  • Hirata K, Ishida T, Matsushita H et al.: Regulated expression of endothelial cell-derived lipase. Biochem. Biophys. Res. Commun. 272, 90–93 (2000).
  • Jin W, Sun GS, Marchadier D et al.: Endothelial cells secrete triglyceride lipase and phospholipase activities in response to cytokines as a result of endothelial lipase. Circ. Res. 92, 644–650 (2003).
  • Azumi H, Hirata K, Ishida T et al.: Immunohistochemical localization of endothelial cell-derived lipase in atherosclerotic human coronary arteries. Cardiovasc. Res. 58, 647–654 (2003).
  • Lindegaard ML, Nielsen JE, Hannibal J et al.: Expression of the endothelial lipase gene in murine embryos and reproductive organs. J. Lipid Res. 46, 439–444 (2005).
  • Fuki IV, Blanchard N, Jin W et al.: Endogenously produced endothelial lipase enhances binding and cellular processing of plasma lipoproteins via heparan sulfate proteoglycan-mediated pathway. J. Biol. Chem. 278, 34331–34338 (2003).
  • Broedl UC, Maugeais C, Marchadier D et al.: Effects of nonlipolytic ligand function of endothelial lipase on high density lipoprotein metabolism in vivo. J. Biol. Chem. 278, 40688–40693 (2003).
  • Jin W, Broedl UC, Monajemi H et al.: Lipase H, a new member of the triglyceride lipase family synthesized by the intestine. Genomics 80, 268–273 (2002).
  • Remington SG, Nelson JD: mRNA encoding a new lipolytic enzyme expressed in rabbit lacrimal glands. Invest. Ophthalmol. Vis. Sci. 43, 3617–3624 (2002).
  • Wen XY, Stewart AK, Skaug J et al.: Murine phosphatidylserine-specific phospholipase A1 (Ps-pla1) maps to chromosome 16 but is distinct from the lpd (lipid defect) locus. Mamm. Genome 12, 129–132 (2001).
  • Scanlan MJ, Gordon CM, Williamson B et al.: Identification of cancer/testis genes by database mining and mRNA expression analysis. Int. J. Cancer 98, 485–492 (2002).
  • Staege MS, Hutter C, Neumann I et al.: DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res. 64, 8213–8221 (2004).
  • Ye X, Ishii I, Kingsbury MA et al.: Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim. Biophys. Acta 1585, 108–113 (2002).
  • Anliker B, Chun J: Cell surface receptors in lysophospholipid signaling. Semin. Cell Dev. Biol. 15, 457–465 (2004).
  • Aoki J: Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 15, 477–489 (2004).
  • Sengupta S, Wang Z, Tipps R et al.: Biology of LPA in health and disease. Semin. Cell Dev. Biol. 15, 503–512 (2004).
  • Mills GB, Moolenaar WH: The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer 3, 582–591 (2003).
  • Fang X, Schummer M, Mao M et al.: Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim. Biophys. Acta 1582, 257–264 (2002).
  • Shen Z, Wu M, Elson P et al.: Fatty acid composition of lysophosphatidic acid and lysophosphatidylinositol in plasma from patients with ovarian cancer and other gynecological diseases. Gynecol. Oncol. 83, 25–30 (2004).
  • Contos JJ, Fukushima N, Weiner JA et al.: Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl Acad. Sci. USA 97, 13384–13389 (2000).
  • Contos JJ, Ishii I, Fukushima N et al.: Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol. Cell. Biol. 22, 6921–6929 (2002).
  • Inoue M, Rashid MH, Fujita R et al.: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat. Med. 10, 712–718 (2004).
  • Ye X, Hama K, Contos JJ et al.: LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435, 104–108 (2005).
  • Yamashita H, Kitayama J, Shida D et al.: Differential expression of lysophosphatidic acid receptor-2 in intestinal and diffuse type gastric cancer. J. Surg. Oncol. 93, 30–35 (2006).
  • Kitayama J, Shida D, Sako A et al.: Overexpression of lysophosphatidic acid receptor-2 (LPA2) in human invasive ductal carcinoma. Breast Cancer Res. 6, R640–R646 (2004).
  • Shida D, Watanabe T, Aoki J et al.: Aberrant expression of lysophosphatidic acid (LPA) receptors in human colorectal cancer. Lab. Invest. 84, 1352–1362 (2004).
  • Bandoh K, Aoki J, Tsujimoto M et al.: Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species – structure-activity relationship of cloned LPA receptors. FEBS Lett. 478, 159–165 (2000).
  • Bandoh K, Aoki J, Hosono H et al.: Molecular cloning and characterization of a novel human G-protein- coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem. 274, 27776–27785 (1999).
  • Xu Y, Aoki J, Shimizu K et al.: Structure–activity relationships of fluorinated lysophosphatidic acid analogues: discovery of high-affinity lpa3 receptor agonists. J. Med. Chem. 48, 3319–3327 (2005).
  • Min DS, Park SK, Exton JH: Characterization of a rat brain phospholipase D isozyme. J. Biol. Chem. 273, 7044–7051 (1998).
  • Higgs HN, Glomset JA: Purification and properties of a phosphatidic acid-preferring phospholipase A1 from bovine testis. Examination of the molecular basis of its activation. J. Biol. Chem. 271, 10874–10883 (1996).
  • Han MH, Han DK, Aebersold RH et al.: Effects of protein kinase CK2, extracellular signal-regulated kinase 2, and protein phosphatase 2A on a phosphatidic acid-preferring phospholipase A1. J. Biol. Chem. 276, 27698–27708 (2001).
  • Uchiyama S, Miyazaki Y, Amakasu Y et al.: Characterization of heparin low-affinity phospholipase A1 present in brain and testicular tissue. J. Biochem. 125, 1001–1010 (1999).
  • Thuren T, Sisson P, Waite M: Hydrolysis of lipid mixtures by rat hepatic lipase. Biochim. Biophys. Acta 1046, 178–184 (1990).
  • Barlowe C, Schekman R: SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365, 347–349 (1993).
  • Brady L, Brzozowski AM, Derewenda ZS et al.: A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767–770 (1990).
  • Winkler FK, D’Arcy A, Hunziker W: Structure of human pancreatic lipase. Nature 343, 771–774 (1990).
  • Roussel A, Yang Y, Ferrato F et al.: Structure and activity of rat pancreatic lipase-related protein 2. J. Biol. Chem. 273, 32121–32128 (1998).
  • Roussel A, de Caro J, Bezzine S et al.: Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations. Proteins 32, 523–531 (1998).
  • Holmquist M: ℑ/ℜ-hydrolase fold enzymes: structures, functions and mechanisms. Curr. Protein Pept. Sci. 1, 209–235 (2000).
  • Heikinheimo P, Goldman A, Jeffries C et al.: Of barn owls and bankers: a lush variety of 〈/® hydrolases. Structure 7, R141–R146 (1999).
  • Ayvazian L, Kerfelec B, Granon S et al.: The lipase C-terminal domain. A novel unusual inhibitor of pancreatic lipase activity. J. Biol. Chem. 276, 14014–14018 (2001).
  • van Tilbeurgh H, Sarda L, Verger R et al.: Structure of the pancreatic lipaseprocolipase complex. Nature 359, 159–162 (1992).
  • van Tilbeurgh H, Roussel A, Lalouel JM et al.: Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J. Biol. Chem. 269, 4626–4633 (1994).
  • Kobayashi Y, Nakajima T, Inoue I: Molecular modeling of the dimeric structure of human lipoprotein lipase and functional studies of the carboxyl-terminal domain. Eur. J. Biochem. 269, 4701–4710 (2002).
  • Keiper T, Schneider JG, Dugi KA: Novel site in lipoprotein lipase (LPL415;-438) essential for substrate interaction and dimer stability. J. Lipid Res. 42, 1180–1186 (2001).
  • Broedl UC, Jin W, Fuki IV et al.: Structural basis of endothelial lipase tropism for HDL. FASEB J. 18, 1891–1893 (2004).
  • Chahinian H, Sias B, Carriere F: The C-terminal domain of pancreatic lipase: functional and structural analogies with c2 domains. Curr. Protein Pept. Sci. 1, 91–103 (2000).
  • Sendak RA, Berryman DE, Gellman G et al.: Binding of hepatic lipase to heparin. Identification of specific heparin-binding residues in two distinct positive charge clusters. J. Lipid Res. 41, 260–268 (2000).
  • Hill JS, Yang D, Nikazy J et al.: Subdomain chimeras of hepatic lipase and lipoprotein lipase. Localization of heparin and cofactor binding. J. Biol. Chem. 273, 30979–30984 (1998).
  • van Tilbeurgh H, Egloff MP, Martinez C et al.: Interfacial activation of the lipaseprocolipase complex by mixed micelles revealed by x-ray crystallography. Nature 362, 814–820 (1993).
  • Egloff MP, Marguet F, Buono G et al.: The 2.46 Å resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry 34, 2751–2762 (1995).
  • Lowe ME: The triglyceride lipases of the pancreas. J. Lipid Res. 43, 2007–2016 (2000).
  • Griffon N, Budreck EC, Long CJ et al.: Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras. J. Lipid Res. 47, 1803–1811 (2006).
  • Dugi KA, Dichek HL, Santamarina FS: Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity. J. Biol. Chem. 270, 25396–25401 (1995).
  • Dugi KA, Dichek HL, Talley GD et al.: Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates. J. Biol. Chem. 267, 25086–25091 (1992).
  • Withers MC, Carriere F, Verger R et al.: A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Structure 4, 1363–1374 (1996).
  • Davis RC, Wong H, Nikazy J et al.: Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzymespecific properties. J. Biol. Chem. 267, 21499–21504 (1992).
  • Qiao F, Bowie JU: The many faces of SAM. Sci. STKE, 1–10 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.