231
Views
10
CrossRef citations to date
0
Altmetric
Special Report

PPARα: its role in the human metabolic syndrome

&
Pages 31-53 | Published online: 18 Jan 2017

Bibliography

  • Okrainec K, Banerjee DK, Eisenberg MJ: Coronary artery disease in the developing world. Am. Heart J. 148, 7–15 (2004).
  • Epidemiological review suggesting that the developing world is currently experiencing an epidemic of coronary artery disease (CAD) and, if unchecked, CAD-associated morbidity and mortality rates are expected to continue to rise for the foreseeable future.
  • American Heart Association: Heart disease and stroke statistics – 2005 update; Dallas, TX, USA. American Heart Association (2005).
  • Rashid MN, Fuentes F, Touchon RC, Wehner PS: Obesity and the risk for cardiovascular disease. Prev. Cardiol. 6, 42–47 (2003).
  • Review further emphasizes an association between obesity and cardiovascular disease.
  • Scaglione R, Argano C, Di Chiara T, Licata G: Obesity and cardiovascular risk: the new public health problem of worldwide proportions. Expert. Rev. Cardiovasc. Ther. 2, 203–212 (2004).
  • Provides additional evidence to support the concept that obesity is an independent risk factor for CAD.
  • Resnick HE, Howard BV: Diabetes and cardiovascular disease. Annu. Rev. Med. 53, 245–267 (2002).
  • Excellent review covering a range of topics related to epidemiology of diabetes and cardiovascular disease.
  • Sobel BE, Schneider DJ: Cardiovascular complications in diabetes mellitus. Curr. Opin. Pharmacol. 5, 143–148 (2005).
  • Zimmet P, Alberti KGMM, Shaw J: Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001).
  • Represents a fairly comprehensive review on the global diabetic epidemic, with special emphasis on socio-economic implications.
  • Bonow RO, Gheorghiade M: The diabetes epidemic: a national and global crisis. Am. J. Med. 116(Suppl. 5A), S2–S10 (2004).
  • Engelgau MM, Geiss LS, Saaddine JB et al.: The evolving diabetes burden in the United States. Ann. Intern. Med. 140, 945–950 (2004).
  • Morrill AC, Chinn CD: The obesity epidemic in the United States. J. Public Health Policy 25, 353–366 (2004).
  • Addresses the issue of the obesity epidemic in both adults and children in the USA. It also provides evidence implicating physical inactivity and increasing consumption of carbohydrate intake, especially in the form of soft drinks and other foods high in ‘highfructose corn syrup’, as the two main contributors to obesity.
  • Haslam DW, James WP: Obesity. Lancet 366, 1197–1209 (2005).
  • Prentice AM: The emerging epidemic of obesity in developing countries. Int. J. Epidemiol. 35, 93–99 (2006).
  • Lillioja S, Mott DM, Spraul M et al.: Insulin resistance and insulin secretory dysfunstion as precursors of non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 1988–1992 (1993).
  • This original paper provides evidence that insulin resistance is a major risk factor for the development of Type 2 diabetes.
  • Goldstein BL: Insulin resistance: from benign to Type 2 diabetes mellitus. Rev. Cardiovasc. Med. 4(Suppl. 6), S3–S10 (2003).
  • DeFronzo RA: Pathogenesis of Type 2 diabetes mellitus. Med. Clin. North Am. 88, 787–835 (2004).
  • Kahn BB, Flier JS: Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).
  • Article eloquently summarizes the association between obesity and Type 2 diabetes. The authors have also raised the possibility that insulin resistance and hyperinsulinemia, in addition to being caused by obesity, may promote the development of obesity.
  • Lazar MA: How obesity causes diabetes: not a tall tale. Science 307, 373–375 (2005).
  • Despres J-P, Lamarche B, Mauriege P et al: Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 334, 952–957 (1996).
  • Provides evidence that hyperinsulinemia is an independent risk factor for CAD in men.
  • Pyorala M, Miettinen H, Laako M, Pyorala K: Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Circulation 98, 398–404 (1998).
  • Miegs JB: Epidemiology of the insulin resistance syndrome. Curr. Diab. Rep. 3, 73–79 (2003).
  • Reaven G: Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu. Rev. Med. 44, 121–131 (1993).
  • Summarizes the role of insulin resistance in the pathophysiology of metabolic syndrome and its relevance to the etiology and clinical course of patients with Type 2 diabetes, hypertension and CAD.
  • Leslie BR: Metabolic syndrome: historical perspective. Am. J. Med. Sci. 330, 264–268 (2005).
  • Brief chronology of historical events that led to the development of modern concept of the metabolic syndrome.
  • Kahn R, Buse J, Ferrannini E, Stern M: The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28, 2289–2304 (2005).
  • Sarafidis PA, Nilsson PM: The metabolic syndrome: a glance at its history. J. Hypertens. 24, 621–626 (2006).
  • Short review that covers the history of the metabolic syndrome and provides a succinct summary about the various clinical parameters used by different organizations to define metabolic syndrome.
  • Eckel RH, Grundy SM, Zimmet PZ: The metabolic syndrome. Lancet 265, 1415–1428 (2005).
  • In this excellent review, the authors provide a comparison of definitions of the metabolic syndrome, worldwide prevalence of the syndrome, various metabolic parameters impacted by insulin resistance and management of metabolic risk factors.
  • Gill H, Mungo M, Whaley-Connell A, Stump C, Sowers JR: The key role of insulin resistance in the cardiometabolic syndrome. Am. J. Med. Sci. 330, 290–294 (2005).
  • Govindarajan G, Whaley-Connell A, Mungo M, Stump C, Sowers JR: The cardiometabolic syndrome as a cardiovascular risk factor. Am. J. Med. Sci. 330, 311–318 (2005).
  • Hafidh S, Senkottaiyan N, Villarreal D, Alpert MA: Management of the metabolic syndrome. Am. J. Med. Sci. 330, 343–351, (2005).
  • Miranda PJ, DeFronzo RA, Califf RM: Metabolic syndrome: definition, pathophysiology, and mechanisms. Am. Heart J. 149, 33–45 (2005).
  • Provides more recent understanding about the criteria and definitions of metabolic syndrome, the metabolic components of the syndrome and the underlying mechanisms involved in its pathophysiology.
  • Moller DE, Kaufman KD: Metabolic syndrome: a clinical and molecular perspective. Annu. Rev. Med. 56, 45–62 (2005).
  • Useful update regarding the clinical and molecular aspects of the metabolic syndrome.
  • Reaven GM: Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med. 47, 201–210 (2005).
  • Addresses insulin resistance with emphasis on a number of clinical conditions that are known to be associated with insulin resistance and compensatory hyperinsulinemia.
  • Poole R, Byrne CD: The metabolic syndrome and type 2 diabetes. Minerva Endocrinol. 30, 139–159 (2005).
  • Grundy SM: Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J. Am. Coll. Cardiol. 47, 1093–1100 (2006).
  • Cameron AJ, Shaw JE, Zimmet PZ: The metabolic syndrome: prevalence in worldwide populations. Endocrinol. Metab. Clin. North Am. 33, 351–375 (2004).
  • Ford ES, Giles WH, Mokdad AK: Increasing prevalence of the metabolic syndrome among US adults. Diabetes Care 27, 2444–2449 (2004).
  • Haffner S, Taegtmeyer H: Epidemic obesity and the metabolic syndrome. Circulation 108, 1541–1545 (2003).
  • Ford ES, Giles WH, Dietz WH: Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Survey. JAMA 287, 356–359 (2002).
  • Alexender CM, Landsman PB, Teutsch SM, Haffner SM: NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 52, 1210–1214 (2003).
  • Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH: Prevalence of a metabolic syndrome phenotype in aldolescents: findings from the third National Health and Nutrition Examination Survey, 1988– 1994. Arch. Pediatr. Adolesc. Med. 157, 821–827 (2003).
  • Grundy SM: A constellation of complications: the metabolic syndrome. Clin. Cornerstone 7, 36–45 (2005).
  • Ginsberg HN, Huang LS: The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J. Cardiovasc. Risk 7, 325–331 (2000).
  • Adams LA, Angulo P, Lindor KD: Nonalcoholic fatty liver disease. CMAJ 172, 899–905 (2005).
  • Important review describing an association between nonalcoholic fatty liver disease and the metabolic syndrome.
  • Marchesini G, Babini M: Nonalcoholic fatty liver disease and the metabolic syndrome. Minerva Cardiol. 54, 229–239 (2006).
  • Provides evidence in support of nonalcoholic fatty liver disease as being a component of the metabolic syndrome.
  • McGarry JD: Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of Type 2 diabetes. Diabetes 51, 7–18 (2002).
  • Implicates dysregulated fatty-acid metabolism in the etiology of Type 2 diabetes.
  • Goodpaster BH, Wolf D: Skeletal muscle lipid accumulation in obesity, insulin resistance, and Type 2 diabetes. Pediatric Diabetes 5, 219–226 (2004).
  • Borradaile NM, Schaffer JE: Lipotoxicity in the heart. Curr. Hypertens. Res. 7, 412–417 (2005).
  • Rhodes CJ: Type 2 diabetes—a matter of β-cell life and death? Science 307, 380–384 (2005).
  • Stumvoll M, Goldstein B, van Haeften TW: Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).
  • Zhang R, Liao J, Morse S, Donelon S, Reisin E: Kidney disease and the metabolic syndrome. Am. J. Med. Sci. 330, 319–325 (2005).
  • Rosmond R: Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology 30, 1–10 (2005).
  • Wang M: The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr. Metab. 2, 3–16 (2005).
  • Unger RH: Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 144, 5159–5165 (2003).
  • Young LR, Nestle M: The contribution of expanding portion sizes to the US obesity epidemic. Am. J. Public Health 92, 246–249 (2002).
  • Bray GA, Popkin BM: Dietary fat intake does affect obesity. Am. J. Clin. Nutr. 68, 1157–1173 (1998).
  • Johnson RK, Frary C: Choose beverages and foods to moderate your intake of sugars: the 2000 dietary guidelines for Americans – what’s all the fuss about? J. Nutr. 131, S2766–S2771 (2001).
  • Bray GA, Nielsen SJ, Popkin BM: Consumption of high-fructose corn syrup beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79, 537–543 (2004).
  • Evidence that overconsumption of calorically sweetened soft drinks may be an important contributor to the epidemic of obesity, in part through the large portion sizes of these beverages and through the increased intake of fructose from high-fructose corn syrup and sucrose.
  • Stone NJ, Saxon D: Approach to treatment of the patient with metabolic syndrome: lifestyle therapy. Am. J. Cardiol. 96, E15–E21 (2005).
  • Corella D, Ordovas JM: The metabolic syndrome: a crossroad for genotype–phenotype associations in atherosclerosis. Curr. Atheroscler. Rep. 6, 186–196 (2004).
  • Roche HM, Phillips C, Gibney MJ: The metabolic syndrome: the crossroads of diet and genetics. Proc. Nutr. Soc. 64, 371–377 (2005).
  • Wisse BE: The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol. 15, 2792–2800 (2004).
  • Hutley L, Prins JB: Fat as an endocrine organ: relationship to the metabolic syndrome. Am. J. Med. Sci. 330, 280–289 (2005).
  • Central theme of this review article is that adipose tissue not only functions as a lipid storage depot, but also plays a crucial role in the development of the metabolic syndrome and the progression of metabolic disease.
  • Hitzenberger K, Richter-Quittner M: Ein Beitrag zum Stoffwechsel bei der vaskulären Hypertonie. Weiner Arch Innere Med. 2, 189–216 (1921).
  • Hitzenberger K: Über den Blutdruck bei Diabetes Mellitus. Weiner Arch Innere Med. 2, 461–466 (1921).
  • Kylin E: Hypertonie and Zuckerkrankheit. Zentralblatt für Innere Medizin 42, 873–877 (1921).
  • Marañon G: Über Hypertonie and Zuckerkrankheit. Zentralblatt für Innere Medizin 43, 169–176 (1922).
  • Kylin E: Studien über das Hypertoni- Hyperglycemi-Hyperurikmi syndrom. Zentralblatt für Innere Medizin 44, 105–112 (1923).
  • Himsworth H: Diabetes mellitus: a differentiation into insulin-sensitive and insulin-insensitive types. Lancet 1, 127–130 (1936).
  • Vague J: La differenciation sexuelle. Facteur determinant des formes de l’ obésite. Presse Méd. 55, 339–340 (1947).
  • Vague J: The degree of masculine differentiation of obesities. A factor determining predisposition to diabetes, atherosclerosis, gout and uric calculous disease. Am. J. Clin. Nutr. 4, 20–34 (1956).
  • Albrink MJ, Meigs JW: Interrelationship between skinfold thickness, serum lipids and blood sugar in normal men. Am. J. Clin Nutr. 15, 255–261 (1964).
  • Cámus JP: Goutte, diabète, hyperlipémie: un trisyndrome métabolique. Rev. Rhum. 33, 10–15 (1966).
  • Welborn TA, Breckenridge A, Rubinstein AH, Dollery CT, Fraser TR: Serum-insulin in essential hypertension and in peripheral vascular disease. Lancet 1, 1336–1337 (1966).
  • Avogaro P, Crepaldi G: Plurimetabolic syndrome. Acta Diabetol. Lat. 4, 572–580 (1967).
  • Mehnert H, Kuhlmann H: Hypertonie und diabetes mellitus. Dtsch Med. J. 19, 567–571 (1968).
  • Hansfeld M, Leonhardt W: Das metabolische syndrom. Dt. Gesundh-Wesen 36, 545–551 (1981).
  • Krotkiewski M, Björntorp P, Sjöström L, Smith U: Impact of obesity on metabolism in men and women: importance of regional adipose tissue distribution. J. Clin. Invest. 72, 1150–1162 (1983).
  • Bjorntorp P: Metabolic implications of body fat distribution. Diabetes Care 14, 1132–1143 (1991).
  • Kissebah AH, Vydelingum N, Murray R et al.: Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 54, 254–260 (1982).
  • Modan M, Halkin H, Almog S et al.: Hyperinsulinemia: a link between hypertension, obesity and glucose intolerance. J. Clin. Invest. 75, 809–817 (1985).
  • DeFronzo RA, Simonson D, Ferrannini E: Hepatic and peripheral insulin resistance: a common feature of Type 2 (non-insulindependent) and Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 23, 313–319 (1982).
  • Ferrannini E, Buzzigoli G, Bonadonna R et al.: Insulin resistance in essential hypertension. N. Engl J. Med. 317, 350–357 (1987).
  • Wingard DL, Barret-Connor E, Criqui MH, Suarez L: Clustering of heart disease risk factors in diabetes compared to non-diabetic adults. Am. J. Epidemiol. 117, 19–26 (1983).
  • Reaven GM: Banting lecture 1988: role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).
  • Classic paper in which Reaven introduced the concept that insulin resistance is central to the pathogenesis of Type 2 diabetes, hypertention, dyslipidemia and CAD.
  • Kaplan NM: The deadly quartet: upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch. Intern. Med. 149, 1514–1520 (1989).
  • DeFronzo RA, Ferrannini E: Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14, 173–194 (1991).
  • Zimmet PZ: Kelly West lecture 1991. Challenges in diabetes epidemiology – from west to the rest. Diabetes Care 15, 232–252 (1992).
  • Hjermann I: The metabolic cardiovascular syndrome: syndrome X, Reaven’s syndrome, insulin resistance syndrome, atherothrombogenic syndrome. J. Cardiovasc. Pharmacol. 20(Suppl. 8), S5–S10 (1992).
  • Grundy SM, Cleeman JI, Daniels SR et al.: Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 2735–2752 (2005).
  • Ferrannini E, Haffner SM, Mitchell BD, Stern MP: Hyperinsulinemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia 34, 416–422 (1991).
  • Reaven G: The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol. Metab. Clin. North Am. 33, 283–303 (2004).
  • Pouliot MC, Despres JP, Lemieux S et al.: Waist circumference and abdominal saggital diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am. J. Cardiol. 73, 460–468 (1994).
  • Lemieux I, Pascot A, Couillard C et al.: Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia: hyperapolipoprotein B; small, dense LDL) in men? Circulation 102, 179–184 (2000).
  • Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB: The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988– 1994. Arch. Intern. Med. 163, 427–436 (2003).
  • Carr DB, Utzschneider KM, Hull RL et al.: Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment III criteria for the metabolic syndrome. Diabetes 53, 2087–2094 (2004).
  • Meigs JB, D’Agostina RB Sr, Wilson PW, Cupples LA, Nathan DM, Singer DE: Risk variable clustering in the insulin resistance syndrome: the Framingham Offspring Study. Diabetes 46, 1594–1600 (1997).
  • Hanley AJ, Karter AJ, Festa A et al.: Factor analysis of metabolic syndrome using directly measured insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Diabetes 51, 2642–2647 (2002).
  • Alberti KGMM, Zimmet P, Shaw J: The metabolic syndrome – a new worldwide definition. Lancet 366, 1059–1062 (2005).
  • Reaven G: Insulin resistance, Type 2 diabetes mellitus, and cardiovascular disease: the end of the beginning. Circulation 112, 3030–3032 (2005).
  • Gustat J, Srinivasan SR, Elkasabany A, Berenson GS: Relation of self-rated measures of physical activity to multiple risk factors of insulin resistance syndrome in young adults: the Bogalusa Heart Study. J. Clin. Epidemiol. 55, 997–1006 (2002).
  • Apridonidze T, Essah PA, Iuorno MJ, Nestler JE: Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90, 1929–1935 (2004).
  • Authors conclude that the metabolic syndrome and its components are common in women with polycystic ovary syndrome, placing them at a greater risk for cardiovascular disease.
  • American Diabetes Association: Consensus Development Conference on Insulin Resistance. 5–6 November 1997. Diabetes Care 21, 310–314 (1998).
  • Alberti KG, Zimmet PZ: Definition, diagnosis and its complications, part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).
  • Definition, Diagnosis and Classification of Diabetes Mellitus and its complications. Geneva, Switzerland: Department of Noncommunible Disease Surveillance. World Health Organization (1999).
  • Balkau B, Charles MA: Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Metab. 16, 442–443 (1999).
  • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of the third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).
  • Einhorn D, Reaven GM, Cobin RH et al.: American College of Endocrinology position statement on the insulin resistance syndrome. Endocr. Pract. 9, 237–252 (2003).
  • Grundy S, Brewer HB, Cleeman J, Smith SC, Lenfant C: For the conference participants. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association on scientific issues related to definition. Circulation 109, 433–438 (2004).
  • Gotto AM Jr, Blackburn GL, Dailey GE III et al.: The metabolic syndrome: a call to action. Coron. Artery Dis. 17, 77–80 (2006).
  • Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999).
  • Excellent review that discusses molecular and physiological aspects of peroxisome proliferator-activated receptors (PPARs).
  • Lee C-H, Olson P, Evans RM: Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferatoractivated receptors. Endocrinology 144, 2201–2207 (2003).
  • Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527–550 (2000).
  • Describes the molecular characteristics and physiological function of PPARs and discusses the potential utility of PPARs as molecular targets for the development of drugs to treat human metabolic diseases.
  • Berger J, Moller DE: The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002).
  • Covers the molecular mechanisms of PPAR action and the involvement of PPARs in the etiology and treatment of several chronic diseases.
  • Francis GA, Fayard E, Picard F, Auwerx J: Nuclear receptors and the control of metabolism. Annu. Rev. Physiol. 65, 261–311 (2003).
  • Broad description of nuclear receptors in relation to the control of the metabolic processes is presented.
  • Ferré P: The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53(Suppl. 1), S43–S50 (2004).
  • Emphasizes PPARs role as a major regulator of lipid and glucose homeostasis.
  • Tham DM, Wang Y-X, Rutledge JC: Modulation of vascular inflammation by PPARs. Drug News Perspect. 16, 109–116 (2003).
  • Castrillo A, Tontonoz P: Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu. Rev. Cell Dev. Biol. 20, 455–480 (2004).
  • Comprehensive review of nuclear receptors literature with an emphasis on the roles of PPARs and liver X receptors (LXRs) in the regulation of macrophage lipid homeostasis, inflammation and gene expression, and their relevance to cardiovascular disease.
  • Kosadinova R, Wahli W, Michalik L: PPARs in diseases: control mechanisms of inflammation. Curr. Med. Chem. 12, 2995–3009 (2005).
  • Chen YE, Fu M, Zhang J et al.: Peroxisome proliferator-activated receptors and cardiovascular system. Vit. Horm. 66, 157–188 (2003).
  • Marx N, Duez H, Fruchart J-C, Staels B: Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ. Res. 94, 1168–1178 (2004).
  • Li AC, Palinski W: Peroxisome proliferatoractivated receptors: how their effects on macrophages can lead to the development of a new drug therapy against atherosclerosis. Annu. Rev. Pharmacol. Toxicol. 46, 1–39 (2006).
  • Important review with primary emphasis on the roles of PPARs in macrophage biology, including macrophage/foam-cell formation.
  • Lefebvre P, Chinetti G, Fruchart J-C, Staels B: Sorting out the roles of PPAR in energy metabolism and vascular homeostasis. J. Clin. Invest. 116, 571–580 (2006).
  • Semple RK, Chatterjee VK, O’Rahilly S: PPAR and human metabolic disease. J. Clin. Invest. 116, 581–589 (2006).
  • Barish GD, Narkar VA, Evans RM: PPAR : a dagger in the heart of the metabolic syndrome. J. Clin. Invest. 116, 590–597 (2006).
  • Provides evidence that PPAR´ may be a new therapeutic target that may achieve both triglyceride lowering as well as improving insulin sensitivity.
  • Guan Y-F, Breyer MD: Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int. 60, 14–30 (2001).
  • Mandard S, Müller M, Kersten S: Peroxisome proliferator-activated receptor target genes. Cell. Mol. Life Sci. 61, 393–416 (2004).
  • Provides an extensive list of PPARα-regulated target genes.
  • Reddy JK: Peroxisome proliferators and peroxisome proliferators-activated receptor . Biotic and xenobiotic sensing. Am. J. Pathol. 164, 2305–2321 (2004).
  • Barbier O, Torra P, Duguay Y et al.: Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 22, 717–726 (2002).
  • Hsu M-H, Palmer CAN, Song W, Griffin KJ, Johnson EF: A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding. J. Biol. Chem. 273, 27088–27997 (1998).
  • Privalsky ML: The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu. Rev. Physiol. 66, 315–360 (2004).
  • Most recent review on the corepressor-mediated, negative regulation of PPARs function.
  • Chakravarthy MV, Pan Z, Zhu Y et al.: ‘New’ hepatic fat activates PPAR to maintain glucose, lipid and cholesterol homeostasis. Cell Metab. 1, 309–322 (2005).
  • Spiegelman BM, Heinrich R: Biological control through regulated transcriptional coactivators. Cell 119, 157–167 (2004).
  • Main focus of this article is on the coactivator regulation of nuclear hormone receptors.
  • Bishop-Bailey D: Peroxisome proliferator-activated receptors in the cardiovascular system. Brit. J. Pharmacol. 129, 823–834 (2000).
  • Akiyama TE, Meinke PT, Berger JP: PPAR ligands: potential therapies for metabolic syndrome. Curr. Diab. Rep. 5, 45–52 (2005).
  • Kuwabara K, Murakami K, Todo M et al.: A novel selective peroxisome proliferatoractivated -agonist, 2-methyl-c-5-[4-[5- methyl-2-(4-methylphenyl)-4- oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid (NS-220), potently decreases plasma triglyceride and glucose levels and modifies lipoprotein profiles in KK-Ay mice. J. Pharmacol. Exp. Ther. 309, 970–977 (2004).
  • Pelton PD, Patel M, Demarest KT: Nuclear receptors as potential targets for modulating reverse cholesterol transport. Curr. Top. Med. Chem. 5, 265–282 (2005).
  • Staels B, Fruchart J-C: Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54, 2460–2470 (2005).
  • Useful, systematic review that provides clinical trial data about the PPAR agonists in the management of dyslipidemia and cardiovascular disease.
  • Israelian-Konaraki Z, Reaven PD: Peroxisome proliferators-activated receptor- and atherosclerosis: from basic mechanisms to clinical implications. Cardiology 103, 1–9 (2005).
  • Dumasia R, Eagle KA, Kline-Rogers E, May N, Cho L, Mukherjee D: Role of PPAR- agonist thiazolidinediones in treatment of pre-diabetic and diabetic individuals: a cardiovascular perspective. Curr. Drug Targets Cardiovasc. Haematol. Disord. 5, 377–386 (2005).
  • Aasum E, Belke DD, Severson DL et al.: Cardiac function and metabolism in the Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR- activator. Am. J. Physiol. Heart Circ. Physiol. 283, H949–H957 (2002).
  • Schäfer SA, Hansen BC, Völkl A, Fahimi HD, Pill J: Biochemical and morphological effects of K-111, a peroxisome proliferator-actvated receptor (PPAR) activator. Biochem. Pharmacol. 68, 239–251 (2004).
  • Cheng PT, Mukherjee R: PPARs as targets for metabolic and cardiovascular diseases. Mini Rev. Med. Chem. 5, 741–753 (2005).
  • Brandt JM, Djouadi F, Kelley DP: Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor . J. Biol. Chem. 273, 23786–23792 (1998).
  • Mascaró C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D: Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferators-activated receptor. J. Biol. Chem. 273, 8560–8563 (1998).
  • Barrero MJ, Camarero N, Marrero PF, Haro D: Control of human carnitine palmitoyltransferase II gene transcription by peroxisome-activated receptor through a partially conserved proliferator proliferator-responsive element. Biochem. J. 369, 721–729 (2003).
  • Gulick T, Cresci S, Caira T, Moore DD, Kelly DP: The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl Acad. Sci. USA 91, 11012–11016 (1994).
  • Rodriguez JC, Gil-Gomez G, Hegardt FG, Haro D: Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy- 3-methylglutaryl-CoA synthase gene by fatty acids. J. Biol. Chem. 269, 18767–18772 (1994).
  • Lee SS-T, Pineau T, Drago J et al.: Targeted disruption of the isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. 15, 3012–3022 (1995).
  • Zhang B, Marcus SL, Sajjadi FG et al.: Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal anoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Proc. Natl Acad. Sci. USA 89, 7541–7545 (1992).
  • Nicolas-Frances V, Dasari VK, Abruzzi E, Osumi T, Latruffe N: The peroxisome proliferator response element (PPRE) present at positions -681/-669 in the rat liver 3-ketoacyl-CoA thiolase B gene functionally interacts differently with PPAR and HNF- . Biochem. Biophys. Res. Comunn. 269, 347–351 (2000).
  • Aldridge TC, Tungwood JD, Green S: Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription. Biochem. J. 306, 473–479 (1995).
  • Peters JM, Hennuyer N, Staels B et al.: Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor -deficient mice. J. Biol. Chem. 272, 27307–27312 (1997).
  • Aoyama T, Peters JM, Iritani N et al.: Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor (PPAR ). J. Biol. Chem. 273, 5678–5684 (1998).
  • Costet P, Legerdre C, More J, Edger A, Galtier P, Pineau T: Peroxisome proliferator-activated receptor -isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J. Biol. Chem. 273, 29577–29585 (1998).
  • Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S: The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 11, 433–439 (1992).
  • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W: Peroxisome proliferator-activated receptor mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999).
  • Leone TC, Weinheimer CJ, Kelly DP: A critical role for the peroxisome proliferator-activated receptor (PPAR ) in the cellular fasting response: the PPAR -null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA 96, 7473–7478 (1999).
  • Huss JM, Kelly DP: Nuclear receptor signaling and cardiac energetics. Circ. Res. 95, 568–578 (2004).
  • Riby JE, Fujisawa T, Kretchmer N: Fructose absorption. Am. J. Clin. Nutr. 58, S748–S753 (1993).
  • Aoyama Y, Yoshida A, Ashida K: Effect of dietary fats and fatty acids on the liver lipid accumulation induced by feeding a protein-repletion diet containing fructose to protein-depleted rats. J. Nutr. 104, 741–746 (1974).
  • Jurgens H, Hass W, Castaneda TR et al.: Consuming fructose-sweetened beverages increases body adiposity in mice. Obes. Res. 13, 1146–1156 (2005).
  • Nagai Y, Nishio Y, Nakamura T, Maegawa H, Kikkawa R, Kashiwagi A: Amelioration of high fructose-induced metabolic derangements by activation of PPAR . Am. J. Physiol. Endocrinol. Metab. 282, E1180–E1190 (2002).
  • Kelley GL, Allan G, Azhar S: High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 145, 548–555 (2004).
  • Wei Y, Wang D, Pagliassotti MJ: Fructose selectively modulates c-jun N-terminal kinase activity and insulin signaling in rat primary hepatocytes. J. Nutr. 135, 1642–1646 (2005).
  • Basciano H, Federico L, Adeli K: Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. (Lond.). 2, 5 (2005).
  • Berger PM, Kelly DP: PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc. Med. 10, 238–245 (2000).
  • Djouadi F, Brandt J, Weinheimer CJ, Leone TC, Gonzalez FJ, Kelley DP: The role of the peroxisome proliferator-activated receptor (PPAR ) in the control of cardiac lipid metabolism. Prostaglandins Leukot. Essent. Fatty Acids 60, 339–343 (1999).
  • Watanabe K, Fujii H, Takahashi T et al.: Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor associated with age-dependent cardiac toxicity. J. Biol. Chem. 275, 22293–22299 (2000).
  • Campbell FM, Kozak R, Wagner A et al.: A role for PPAR in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPAR are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J. Biol. Chem. 277, 4098–4103 (2002).
  • Leone TC, Weinheimer CJ, Kelly DP: A critical role for the peroxisome proliferatoractivated receptor (PPAR ) in the cellular fasting response: the PPAR -null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA 96, 7473–7478 (1996).
  • Finck BN, Lehman JJ, Leone TC et al.: The cardiac phenotype induced by PPAR overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109, 121–130 (2002).
  • Finck BN, Han X, Courtois M et al.: A critical role for PPAR -mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc. Natl Acad. Sci. USA 100, 1226–1231 (2003).
  • Park S-Y, Cho Y-R, Fink BN et al.: Cardiacspecific overexpression of peroxisome proliferator-activated receptor- causes insulin resistance in heart and liver. Diabetes 54, 2514–2524 (2005).
  • Suggests that heart-specific overexpression of PPARα as it occurs in diabetic hearts, leads to cardiac insulin-resistance along with defects in insulin signaling and STAT5 activity and reduced cardiac function.
  • Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP: Deactivation of peroxisome proliferator-activated receptor- during cardiac hypertrophic growth. J. Clin. Invest. 105, 1723–1730 (2000).
  • Young ME, Laws FA, Goodwin GW, Taegtmeyer H: Reactivation of peroxisome proliferator-activated receptor is associated with contractile dysfunction in hypertrophied rat heart. J. Biol. Chem. 276, 44390–44395 (2001).
  • Huss JM, Levy FH, Kelly DP: Hypoxia inhibits the PPAR /RXR gene regulatory pathway in cardiac myocytes. J. Biol. Chem. 276, 44390–44395 (2001).
  • Razeghi P, Young ME, Abbasi S, Taegtmeyer H: Hypoxia in vivo decreases peroxisome proliferator-activated receptor -regulated gene expression in rat heart. Biochem. Biophys. Res. Commun. 287, 5–10 (2001).
  • Kelley DP: PPARs of the heart: there is a crowd. Circ. Res. 92, 482–484 (2003).
  • Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N: Expression of putative fatty acid transport genes are regulated by peroxisome proliferatoractivated receptor and activators in a tissue- and inducer-specific manner. J. Biol. Chem. 273, 16710–16714 (1998).
  • van der Vliet HN, Schaap FG, Levels JH et al.: Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem. Biophys. Res. Commun. 295, 1156–1159 (2002).
  • Schultze A, Alborn WE, Mewton RK, Konrad RJ: Administration of PPAR agonist increases serum apolipoprotein A-V levels and the apolipoprotein A-V/apolipoprotein C-III ratio. J. Lipid Res. 46, 1591–1595 (2005).
  • Demonstrates that PPARα agonist exerts its hypotriglyceridemic effect by modulating levels of apolipoprotein (Apo)A-V and ApoA-V/ApoC-III (lipoprotein lipase inhibitor).
  • Prieur X, Schapp FG, Coste H, Rodríguez JC: Hepatocyte nuclear factor-4 regulates the human apolipoprotein AV gene: identification of a novel response element and involvement in the control by peroxisome proliferatoractivated receptor- coactivator-1a, AMPactivated protein kinase, and mitogenactivated protein kinase pathway. Mol. Endocrinol. 19, 3107–3125 (2005).
  • Prieur X, Huby T, Coste H, Schaap FG, Chapman MJ, Rodríguez JC: Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J. Biol. Chem. 260, 27533–27543 (2005).
  • Dobbins RL, Chester MW, Stevenson BE, Daniels MB, Stein DT, McGarry JD: A fatty acid-dependent step is critically important for both glucose- and non-glucosestimulated insulin secretion. J. Clin. Invest. 101, 2370–2376 (1998).
  • Wollheim CB, Maechler P: -cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes 51(Suppl. 1), S37–S42 (2002).
  • Yaney GC, Corkey BE: Fatty acid metabolism and insulin secretion in pancreatic cells. Diabetologia 46, 1297–1312 (2003).
  • Sugden MC, Holmes MJ: Potential role of peroxisome proliferator-activated receptor- in the modulation of glucose-stimulated insulin secretion. Diabetes 53(Suppl. 1), S71–S81 (2004).
  • Zhou Y-T, Shimabukuro M, Wang M-Y et al.: Role of peroxisome proliferatoractivated receptor in disease of pancreatic -cells. Proc. Natl Acad. Sci. USA 95, 8898–8903 (1998).
  • Roduit R, Morin J, Massé F et al.: Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-1 gene in the pancreatic -cell. J. Biol. Chem. 275, 35799–35806 (2000).
  • Suggests that hyperglycemia downregulates PPARα gene expression in pancreatic β-cells.
  • Gremlich S, Nolan C, Roduit R et al.: Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor transcription up-regulation of fatty acid oxidation. Endocrinology 146, 375–382 (2005).
  • Ravnskjaer K, Boergesen M, Rubi B et al.: Peroxisome proliferator-activated receptor (PPAR ) potentiates, whereas PPAR attenuates, glucose-stimulated insulin secretion in pancreatic -cells. Endocrinology 146, 3266–3276 (2005).
  • Guerre-Millo M, Gervois P, Raspe E et al.: Peroxisome proliferator-activated receptor activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638–16642 (2000).
  • Sugden MC, Bulmer K, Gibbons GF, Knight BL, Holness MJ: Peroxiosmeproliferator- activated receptor- (PPAR ) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem. J. 364, 361–368 (2002).
  • Ye J-M, Doyle PJ, Iglesias MA, Watson DG, Cooney GJ, Kraegen EW: Peroxisome proliferator-activated receptor (PPAR) activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR activation. Diabetes 50, 411–417 (2001).
  • Chou CJ, Haluzik M, Gregory C et al.: WY14,643, a peroxisome proliferatoractivated receptor (PPAR ) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatropic A-ZIP/F-1 mice. J. Biol. Chem. 277, 24484–24489 (2002).
  • Experimental evidence is presented to suggest that administration of PPARα agonist improves hepatic and muscle steatosis and causes a reversal of insulin resistance in lipoatropic A-ZIP/F-1 mice.
  • Koh EH, Kim MS, Park JY et al.: Peroxisome proliferator-activated receptor (PPAR)- activation prevents diabetes in OLETF rats: comparison with PPAR- activation. Diabetes 52, 2331–2337 (2003).
  • Guan Y: Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J. Am. Soc. Nephrol. 15, 2801–2815 (2004).
  • Li AC, Binder C, Gutierrez A et al.: Differential inhibition of macrophage foamcell formation and atherosclerosis in mice by PPAR , β/δ , and . J. Clin. Invest. 114, 1564–1576 (2004).
  • Provides evidence that administration of PPARα agonists to male lwo-density lipoprotein receptor-deficient mice markedly attenuates atherosclerosis. This treatment also inhibits macrophage foam-cell formation.
  • Srivastava RA, Jahagirdar R, Azhar S, Sharma S, Bisgaier CL: Peroxisome proliferator-activated receptor- selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice. Mol. Cell. Biochem. 285, 35–50 (2006).
  • Sugden MC, Greenwood GK, Smith ND, Holness MJ: Peroxisome proliferator-activated receptor- activation during pregnancy attenuates glucose-stimulated insulin hypersecretion in vivo by increasing insulin sensitivity, without impairing pregnancy-induced increases in -cell glucose sensing and responsiveness. Endocrinology 144, 146–153 (2003).
  • Plutzky J: The potential role of peroxisome proliferator-activated receptors on inflammation in Type 2 diabetes mellitus and atherosclerosis. Am. J. Cardiol. 92, 34–41 (2003).
  • Bloomgarden ZT: Inflammation, atherosclerosis, and aspects of insulin action. Diabetes Care 28, 2312–2319 (2005).
  • Lusis AJ: Atherosclerosis. Nature 407, 233–241 (2000).
  • Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).
  • Beaven SW, Tontonoz P: Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia. Annu. Rev. Med. 57, 313–329 (2006).
  • Blaschke F, Takata Y, Caglayan E et al.: Obesity, peroxisome proliferator activated receptor, and atherosclerosis in Type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 26, 28–40 (2005).
  • Skalen K, Gustafsson M, Rydberg EK et al.: Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).
  • Inoue I, Shino K, Awata T, Katayama S: Expression of peroxisome proliferatoractivated receptor (PPAR ) in primary cultures of human vascular endothelial cells. Biochem. Biophys. Res. Commun. 246, 370–374 (1998).
  • Staels B, Koening W, Habib A, Merval R, Lebret M, Torra IP: Activation of human aortic smooth-muscle cells is inhibited by PPAR but not by PPAR activators. Nature 393, 790–793 (1998).
  • Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z: Activation of proliferator-activated receptor and induces apoptosis of human monocyte-derived macrophages. J. Biol. Chem. 273, 25573–25580 (1998).
  • Chinetti G, Gbaguidi FG, Griglio S, Mallat Z, Antonucci M, Poulain P: CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferatoractivated receptors. Circulation 101, 2411–2417 (2000).
  • Zhu L, Bisgaier CL, Aviram M, Newton RS: 9-Cis retinoic acid induces monocyte chemoattractant protein-1 secretion in human monocytic THP-1 cells. Arterioscler. Thromb. Vasc. Biol. 19, 2105–2111 (1999).
  • Delerive P, Martin-Nizard F, Chinetti G et al.: Peroxisome proliferator-activated receptor activators inhibit thrombininduced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ. Res. 85, 394–402 (1999).
  • Jackson SM, Parhami F, Xi XP et al.: Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler. Thromb. Vasc. Biol. 19, 2094–2104 (1999).
  • Marx N, Sukhova GK, Collins T, Libby P, Plutzky J: PPAR activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99, 3125–3131 (1999).
  • Shu H, Wong B, Zhou G et al.: Activation of PPAR or reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem. Biophys. Res. Commun. 267, 345–349 (2000).
  • Chinetti G, Lestavel S, Bocher V et al.: PPAR- and PPAR- activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med. 7, 53–58 (2001).
  • Neve BP, Corseaux D, Chinetti G et al.: PPAR agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation 103, 207–212 (2001).
  • Marx N, Mackman N, Schonbeck U et al.: PPAR activators inhibit tissue factor expression and activity in human monocytes. Circulation 103, 213–219 (2001).
  • Delerive P, De Bosscher K, Vanden-Berghe W, Fruchart JC, Haegeman G, Staels B: DNA binding-independent induction of I B gene transcription by PPAR . Mol. Endocrinol. 16, 1029–1039 (2002).
  • Delerive P, De Bosscher K, Besnard S, Vanden-Berghe W, Peters JM, Gonzalez FJ: Peroxisome proliferator-activated receptor negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF- B and AP-1. J. Biol. Chem. 274, 32048–32054 (1999).
  • Poynter ME, Daynes RA: Peroxisome proliferator-activated receptor activation modulates cellular redox status, represses nuclear factor- B signaling, and reduces inflammatory cytokine production in aging. J. Biol. Chem. 273, 32833–32841 (1998).
  • Madej A, Okopien B, Kowalski J, Zielinski M, Wysocki J, Szygula B: Effects of fenofibrate on plasma cytokine concentrations in patients with atherosclerosis and hyperlipoproteinemia IIB. Int. J. Clin. Pharmacol. Ther. 36, 345–349 (1998).
  • Goya K, Sumitani S, Xu X, Kitamura T, Yamamoto H, Kurebayashi S: Peroxisome proliferator-activated receptor agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 658–663 (2004).
  • Loscalzo J: Nitric oxide and vascular tone. N. Engl. J. Med. 333, 251–253 (1995).
  • De Caterina R, Libby P, Peng HB et al.: Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96, 60–68 (1995).
  • Li AC, Glass CG: PPAR- and LXRdependent pathways controlling lipid metabolism and the development of atherosclerosis. J. Lipid Res. 45, 2161–2173 (2004).
  • Devchand PR, Keller H, Peters JM, Vasquez M, Gonzalez FJ, Wahli W: The PPAR - leukotriene B4 pathway to inflammation. Nature 384, 23–24 (1996).
  • Provides evidence that leukotriene B4 is an activating ligand of PPARα and proposes a feedback mechanism between the duration of the inflammatory response and hepatic clearance of leukotriene B4 via PPAR α-controlled mechanisms.
  • Cuzzocrea S, Mazzon E, Di Paola R et al.: The role of the peroxisome proliferatorsactivated receptor- (PPAR- ) in the regulation of acute inflammation. J. Leukoc. Biol. 79, 999–1010 (2006).
  • Tordjman K, Bernal-Mizrachi C, Zemany L et al.: PPAR deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J. Clin. Invest. 107, 1025–1034 (2001).
  • Suggests that PPARα may contribute to the pathogenesis of diet-induced insulin resistance and atherosclerosis.
  • Fu T, Kashireddy P, Borensztajn J: The peroxisome proliferator-activated receptor agonist ciprofibrate severely aggravates hypercholesterolaemia and accelerates the development of atherosclerosis in mice lacking apolipoprotein E. Biochem. J. 373, 941–947 (2003).
  • Demonstrates the hypercholesterolemic and proatherogenic actions of the PPAR agonist ciprofibrate in a mouse model of atherosclerosis.
  • Claudel T, Leibowitz MD, Fievet C et al.: Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc. Natl Acad. Sci. USA 98, 2610–2615 (2001).
  • Duez H, Chao YS, Hernandez G et al.: Reduction of atherosclerosis by the peroxisome proliferator-activated receptor agonist fenofibrate in mice. J. Biol. Chem. 277, 48051–48057 (2002).
  • Provides evidence that the PPAR agonist fenofibrate is highly effective in reducing atherosclerotic plaques in animal models of atherosclerosis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.