163
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Structure–function relationships in human apolipoprotein A-I: role of a central helix pair

Pages 95-104 | Published online: 18 Jan 2017

Bibliography

  • Fitzgerald ML, Morris AL, Chroni A, Mendez AJ, Zannis VI, Freeman MW: ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux. J. Lipid Res. 45, 287–294 (2004).
  • Hamon Y, Broccardo C, Chambenoit O et al.: ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat. Cell Biol. 2, 399–406 (2000).
  • Smith JD, Le Goff W, Settle M et al.: ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J. Lipid Res. 45, 635–644 (2004).
  • Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ: A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39, 14113–14120 (2000).
  • Fielding PE, Russel JS, Spencer TA, Hakamata H, Nagao K, Fielding CJ: Sterol efflux to apolipoprotein A-I originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry 41, 4929–4937 (2002).
  • Duong PT, Collins HL, Nickel M, Lund-Katz S, Rothblat GH, Phillips MC: Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I. J. Lipid Res. 47, 832–843 (2006).
  • Detailed analysis of high-density lipoprotein (HDL) generated by the apolipoprotein (Apo)A-I interaction with cells.
  • Chau P, Nakamura Y, Fielding CJ, Fielding PE: Mechanism of pre -HDL formation and activation. Biochemistry 45, 3981–3987 (2006).
  • Thuahnai ST, Lund-Katz S, Dhanasekaran P et al.: Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol. Influence of high-density lipoprotein size and structure. J. Biol. Chem. 279, 12448–12455 (2004).
  • Sviridov D, Fidge N, Beaumier-Gallon G, Fielding C: Apolipoprotein A-I stimulates the transport of intracellular cholesterol to cell-surface cholesterol-rich domains (caveolae). Biochem. J. 358, 79–86 (2001).
  • Haidar B, Denis M, Marcil M, Krimbou L, Genest J Jr: Apolipoprotein A-I activates cellular cAMP signaling through the ABCA1 transporter. J. Biol. Chem. 279, 9963–9969 (2004)
  • Nofer JR, Remaley AT, Feuerborn R et al.: Apolipoprotein A-I activates Cdc42 signaling through ABCA1 transporter. J. Lipid Res. 47, 794–803 (2006).
  • Tang C, Vaughan AM, Anantharamaiah GM, Oram JF: Janus kinase 2 modulates the lipid transport-mediating but not protein-stabilizing interactions of amphipathic helices with ABCA1. J. Lipid Res. 47, 107–114 (2006).
  • Yamauchi Y, Chang CC, Hayashi M et al.: Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. J. Lipid Res. 45, 1943–1951 (2004).
  • Yamauchi Y, Hayashi M, Abe-Dohmae S, Yokoyama S: Apolipoprotein A-I activates protein kinase Cα signaling to phosphorylate and stabilize ATP-binding cassette transporter A1 for the high density lipoprotein assembly. J. Biol. Chem. 278, 47890–47897 (2003).
  • Tang C, Vaughan AM, Oram JF: Janus kinase 2 modulates the apolipoprotein interactions with ABCA1 required for removing cellular cholesterol. J. Biol. Chem. 279, 7622–7628 (2004).
  • Chen W, Wang N, Tall AR: A PEST deletion mutant of ABCA1 shows impaired internalization and defective cholesterol efflux from late endosomes. J. Biol. Chem. 280, 29277–29281 (2005).
  • Neufeld EB, Stonik JA, Demosky SJ Jr et al.: The ABCA1 transporter modulates late endocytic trafficking: insights from the correction of the genetic defect in Tangier disease. J. Biol. Chem. 279, 15571–15578 (2004).
  • Rye KA, Duong M, Psaltis MK et al.: Evidence that phospholipids play a key role in pre- apoA-I formation and high-density lipoprotein remodeling. Biochemistry 41, 12538–12545 (2002).
  • Temel RE, Walzem RL, Banka CL, Williams DL: Apolipoprotein A-I is necessary for the in vivo formation of high density lipoprotein competent for scavenger receptor BI-mediated cholesteryl ester-selective uptake. J. Biol. Chem. 277, 26565–26572 (2002).
  • Segrest JP, Jones MK, De Loof H, Brouillette CG, Venkatachalapathi YV, Anantharamaiah GM: The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 33, 141–166 (1992).
  • Ajees AA, Anantharamaiah GM, Mishra VK, Hussain MM, Murthy HM: Crystal structure of human apolipoprotein A-I: Insights into its protective effect against cardiovascular diseases. Proc. Natl Acad. Sci. USA 103, 2126–2131 (2006).
  • First report on the crystalline structure at 2.4 Å of the complete form of ApoA-I.
  • Borhani DW, Rogers DP, Engler JA, Brouillette CG: Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc. Natl Acad. Sci. USA 94, 12291–12296 (1997).
  • First report on the crystalline structure of an ApoA-I fragment, which constitutes the basis for the models of its configuration in the lipid-bound state.
  • Wang J, Sykes BD, Ryan RO: Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc. Natl Acad. Sci. USA 99, 1188–1193 (2002).
  • Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA: 3D structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252, 1817–1822 (1991).
  • Silva RA, Hilliard GM, Fang J, Macha S, Davidson WS: A 3D molecular model of lipid-free apolipoprotein A-I determined by cross-linking/mass spectrometry and sequence threading. Biochemistry 44, 2759–2769 (2005).
  • Saito H, Dhanasekaran P, Nguyen D et al.: -helix formation is required for high affinity binding of human apolipoprotein A-I to lipids. J. Biol. Chem. 279, 20974–20981 (2004).
  • Rogers DP, Roberts LM, Lebowitz J et al.: The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions. Biochemistry 37, 11714–11725 (1998).
  • Garda HA, Arrese EL, Soulages JL: Structure of apolipophorin-III in discoidal lipoproteins. Interhelical distances in the lipid-bound state and conformational change upon binding to lipid. J. Biol. Chem. 277, 19773–19782 (2002).
  • Fluorescence resonance nergy transfer (FRET) study demonstrating that helix-bundle of apolipophorin-III is opened in the lipid-bound state.
  • Silva RA, Hilliard GM, Li L, Segrest JP, Davidson WS: A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins. Biochemistry 44, 8600–8607 (2005).
  • Cross-linking study demonstrating the arrangement of ApoA-I in discoidal-HDL particles.
  • Koppaka V, Silvestro L, Engler JA, Brouillette CG, Axelsen PH: The structure of human lipoprotein A-I. Evidence for the ‘belt’ model. J. Biol. Chem. 274, 14541–14544 (1999).
  • Segrest JP, Jones MK, Klon AE et al.: A detailed molecular belt model for apolipoprotein A-I in discoidal high-density lipoprotein. J. Biol. Chem. 274, 31755–31758 (1999).
  • Tricerri MA, Behling Agree AK, Sanchez SA, Bronski J, Jonas A: Arrangement of apolipoprotein A-I in reconstituted high-density lipoprotein disks: an alternative model based on fluorescence resonance energy transfer experiments. Biochemistry 40, 5065–5074 (2001).
  • Martin DD, Budamagunta MS, Ryan RO, Voss JC, Oda MN: Apolipoprotein A-I assumes a ‘looped belt’ conformation on reconstituted high density lipoprotein. J. Biol. Chem. 281, 20418–20426 (2006).
  • Elegant FRET and electron paramagnetic resonance demonstration of the belt conformation of ApoA-I in reconstituted discoidal HDL, and the existence of a flexible loop segment.
  • Bergeron J, Frank PG, Scales D, Meng QH, Castro G, Marcel YL: Apolipoprotein A-I conformation in reconstituted discoidal lipoproteins varying in phospholipid and cholesterol content. J. Biol. Chem. 270, 27429–27438 (1995).
  • de Beer MC, Durbin DM, Cai L, Jonas A, de Beer FC, van der Westhuyzen DR: Apolipoprotein A-I conformation markedly influences HDL interaction with scavenger receptor BI. J. Lipid Res. 42, 309–313 (2001).
  • Li L, Chen J, Mishra VK et al.: Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity. J. Mol. Biol. 343, 1293–1311 (2004).
  • Maiorano JN, Jandacek RJ, Horace EM, Davidson WS: Identification and structural ramifications of a hinge domain in apolipoprotein A-I discoidal high density lipoproteins of different size. Biochemistry 43, 11717–11726 (2004).
  • Catte A, Patterson JC, Jones MK et al.: Novel changes in discoidal high density lipoprotein morphology: a molecular dynamics study. Biophys. J. 90, 4345–4360 (2006).
  • Peters-Libeu CA, Newhouse Y, Hatters DM, Weisgraber KH: Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine. J. Biol. Chem. 281, 1073–1079 (2006).
  • First Apo fragment crystallized in the lipid-bound state.
  • Pownall HJ, Massey JB, Kusserow SK, Gotto AM Jr: Kinetics of lipid-protein interactions: interaction of apolipoprotein A-I from human plasma high density lipoproteins with phosphatidylcholines. Biochemistry 17, 1183–1188 (1978).
  • Pownall HJ, Massey JB, Kusserow SK, Gotto AM Jr: Kinetics of lipid-protein interactions: effect of cholesterol on the association of human plasma high-density apolipoprotein A-I with L- -dimyristoylphosphatidylcholine. Biochemistry 18, 574–579 (1979).
  • Tricerri MA, Toledo JD, Sanchez SA et al.: Visualization and analysis of apolipoprotein A-I interaction with binary phospholipid bilayers. J. Lipid Res. 46, 669–678 (2005).
  • Two-photon fluorescence microscopy study on giant unilamellar vesicles demonstrating that ApoA-I removes lipids from small liquid-crystalline domains.
  • Surewicz WK, Epand RM, Pownall HJ, Hui SW: Human apolipoprotein A-I forms thermally stable complexes with anionic but not with zwitterionic phospholipids. J. Biol. Chem. 261, 16191–16197 (1986).
  • Tricerri MA, Corsico B, Toledo JD, Garda HA, Brenner RR: Conformation of apolipoprotein AI in reconstituted lipoprotein particles and particle-membrane interaction: effect of cholesterol. Biochim. Biophys. Acta 1391, 67–78 (1998).
  • Arnulphi C, Jin L, Tricerri MA, Jonas A: Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding. Biochemistry 43, 12258–12264 (2004).
  • Rothblat GH, Mahlberg FH, Johnson WJ, Phillips MC: Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. J. Lipid Res. 33, 1091–1097 (1992).
  • Wong L, Curtiss LK, Huang J, Mann CJ, Maldonado B, Roheim PS: Altered epitope expression of human interstitial fluid apolipoprotein A-I reduces its ability to activate 1ecithin:cholesterol acyltransferase. J. Clin. Invest. 90, 2370–2375 (1992).
  • Tricerri MA, Sanchez SA, Arnulphi C, Durbin DM, Gratton E, Jonas A: Interaction of apolipoprotein A-I in three different conformations with palmitoyl oleoyl phosphatidylcholine vesicles. J. Lipid Res. 43, 187–197 (2002).
  • Toledo JD, Tricerri MA, Corsico B, Garda HA: Cholesterol flux between lipid vesicles and apolipoprotein AI discs of variable size and composition. Arch. Biochem. Biophys. 380, 63–70 (2000).
  • Gillotte KL, Zaiou M, Lund-Katz S et al.: Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J. Biol. Chem. 274, 2021–2028 (1999).
  • Burgess JW, Frank PG, Franklin V et al.: Deletion of the C-terminal domain of apolipoprotein A-I impairs cell surface binding and lipid efflux in macrophage. Biochemistry 38, 14524–14533 (1999).
  • Vedhachalam C, Liu L, Nickel M et al.: Influence of ApoA-I structure on the ABCA1-mediated efflux of cellular lipids. J. Biol. Chem. 279, 49931–49939 (2004).
  • Natarajan P, Forte TM, Chu B, Phillips MC, Oram JF, Bielicki JK: Identification of an apolipoprotein A-I structural element that mediates cellular cholesterol efflux and stabilizes ATP binding cassette transporter A1. J. Biol. Chem. 279, 24044–24052 (2004).
  • Panagotopulos SE, Witting SR, Horace EM, Hui DY, Maiorano JN, Davidson WS: The role of apolipoprotein A-I helix 10 in apolipoprotein-mediated cholesterol efflux via the ATP-binding cassette transporter ABCA1. J. Biol. Chem. 277, 39477–39484 (2002).
  • Sviridov D, Pyle LE, Fidge N: Efflux of cellular cholesterol and phospholipid to apolipoprotein A-I mutants. J. Biol. Chem. 271, 33277–33283 (1996).
  • Chroni A, Liu T, Gorshkova I et al.: The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220–231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. J. Biol. Chem. 278, 6719–6730 (2003).
  • Beckstead JA, Block BL, Bielicki JK, Kay CM, Oda MN, Ryan RO: Combined N- and C-terminal truncation of human apolipoprotein A-I yields a folded, functional central domain. Biochemistry 44, 4591–4599 (2005).
  • Complete structural and functional study demonstrating the ability of ApoA-I to promote cell lipid efflux resides in the central region.
  • Corsico B, Toledo JD, Garda HA: Evidence for a central apolipoprotein A-I domain loosely bound to lipids in discoidal lipoproteins that is capable of penetrating the bilayer of phospholipid vesicles. J. Biol. Chem. 276, 16978–16985 (2001).
  • Provides evidence for the ApoA-I central Y-helical membrane-inserting domain by using photoactivable reagents.
  • Kelley LA, MacCallum RM, Sternberg MJ: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520 (2000).
  • Nolde DE, Sobol AG, Pluzhnikov KA, Grishin EV, Arseniev AS: 3D structure of ectatomin from Ectatomma tuberculatum ant venom. J. Biomol. NMR 5, 1–13 (1995).
  • Pluzhnikov KA, Nosyreva E, Shevchenko L et al.: Analysis of ectatomin action on cell membranes. Eur. J. Biochem. 262, 501–506 (1999).
  • Toledo JD, Prieto ED, Gonzalez MC, Soulages JL, Garda HA: Functional independence of a peptide with the sequence of human apolipoprotein A-I central region. Arch. Biochem. Biophys. 428, 188–197 (2004).
  • Provides evidence for the structural and functional independence of the ApoA-I central Y-helical membrane-inserting domain.
  • von Eckardstein A, Castro G, Wybranska I et al.: Interaction of reconstituted high density lipoprotein discs containing human apolipoprotein A-I (ApoA-I) variants with murine adipocytes and macrophages. Evidence for reduced cholesterol efflux promotion by ApoA-I(Pro165 Arg). J. Biol. Chem. 268, 2616–2622 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.