132
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Role Of Nuclear Plc And PI3K Signaling In The Development Of Cancer

, , , , , , , , & show all
Pages 303-311 | Published online: 18 Jan 2017

Bibliography

  • Cocco L, Martelli AM, Fiume R et al.: Signal transduction within the nucleus: revisiting phosphoinositide inositide-specific phospholipase Cβ1. Adv. Enzyme Regul. 46, 2–11 (2006).
  • Manzoli FA, Capitani S, Mazzotti G, Barnabei O, Maraldi NM: Role of chromatin phospholipids on template availability and ultrastructure of isolated nuclei. Adv. Enzyme Regul. 20, 247–262 (1982).
  • Yu H, Fukami K, Watanabe Y, Ozaki C, Takenawa T: Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 251, 281–287 (1998).
  • Irvine RF: Nuclear lipid signalling. Nat. Rev. Mol. Cell. Biol. 4, 349–360 (2003).
  • Manzoli L, Martelli AM, Billi AM et al.: Nuclear phospholipase C: involvement in signal transduction. Prog. Lipid Res. 44, 185–206 (2005).
  • Martelli AM, Fala F, Faenza I et al.: Metabolism and signaling activities of nuclear lipids. Cell. Mol. Life Sci. 61, 1143–1156 (2004).
  • Jones DR, Bultsma Y, Keune WJ et al.: Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4K . Mol. Cell 23, 685–695 (2006).
  • Provides evidence for a new signal transduction pathway, which links cellular stressors to the elevation of nuclear phosphatidylinositol 5 monophosphate (PtdIns5P) and changes in the intranuclear localization of the PtdIns5P receptor inhibitor of growth 2.
  • Cocco L, Gilmour RS, Ognibene A et al.: Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 248, 765–770 (1987).
  • Martelli AM, Faenza I, Billi AM et al.: Intranuclear 3´-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis? Cell. Signal. 18, 1101–1107 (2006).
  • Bregoli L, Tu-Sekine B, Raben DM: DGK and nuclear signaling nuclear diacylglycerol kinases in IIC9 cells. Adv. Enzyme Regul. 42, 213–226 (2002).
  • Tu-Sekine B, Raben DM: Nuclear production and metabolism of diacylglycerol. Eur. J. Histochem. 48, 77–82 (2004).
  • Cocco L, Faenza I, Fiume R et al.: Phosphoinositide-specific phospholipase C (PI-PLC) 1 and nuclear lipid-dependent signaling. Biochim. Biophys. Acta 1761, 509–521 (2006).
  • Steensma DP, Tefferi A: The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk. Res. 27, 95–120 (2003).
  • Hofmann WK, Lubbert M, Hoelzer D, Phillip Koeffler H: Myelodysplastic syndromes. Hematol. J. 5, 1–8 (2004).
  • Tchinda J, Volpert S, McNeil N et al.: Multicolor karyotyping in acute myeloid leukemia. Leuk. Lymphoma 44, 1843–1853 (2003).
  • Lo Vasco VR, Calabrese G, Manzoli L et al.: Inositide-specific phospholipase c 1 gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 18, 1122–1126 (2004).
  • Data suggest the possible involvement of phosphoinositide-specific phospholipase Cβ1 in the progression of the disease and pave the way for a larger investigation aimed at identifying a possible high-risk group among myelodysplasic syndrome patients with a normal karyotype.
  • Peruzzi D, Calabrese G, Faenza I et al.: Identification and chromosomal localisation by fluorescence in situ hybridisation of human gene of phosphoinositide-specific phospholipase C (1). Biochim. Biophys. Acta 1484, 175–182 (2000).
  • Kristiansen G, Sammar M, Altevogt P: Tumour biological aspects of CD24, a mucin-like adhesion molecule. J. Mol. Histol. 35, 255–262 (2004).
  • Faenza I, Billi AM, Follo MY et al.: Nuclear phospholipase C signaling through type 1 IGF receptor and its involvement in cell growth and differentiation. Anticancer Res. 25, 2039–2041 (2005).
  • Favoni RE, de Cupis A: The role of polypeptide growth factors in human carcinomas: new targets for a novel pharmacological approach. Pharmacol. Rev. 52, 179–206 (2000).
  • Pollak M: Insulin-like growth factor physiology and cancer risk. Eur. J. Cancer 36, 1224–1228 (2000).
  • Pahl HL: Towards a molecular understanding of polycythemia rubra vera. Eur. J. Biochem. 267, 3395–3401 (2000).
  • Xu A, Suh PG, Marmy-Conus N et al.: Phosphorylation of nuclear phospholipase C 1 by extracellular signal-regulated kinase mediates the mitogenic action of insulin-like growth factor I. Mol. Cell. Biol. 21, 2981–2990 (2001).
  • Xu A, Wang Y, Xu LY, Gilmour RS: Protein kinase C -mediated negative feedback regulation is responsible for the termination of insulin-like growth factor 1-induced activation of nuclear phospholipase C 1 in Swiss 3T3 cells. J. Biol. Chem. 276, 14980–14986 (2001).
  • Fiume R, Faenza I, Matteucci A et al.: Nuclear phospholipase C 1 (PLC 1) affects CD24 expression in murine erythroleukemia cells. J. Biol. Chem. 280, 24221–24226 (2005).
  • Belov L, de la Vega O, dos Remedios CG, Mulligan SP, Christopherson RI: Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res. 61, 4483–4489 (2001).
  • Valet G, Repp R, Link H, Ehninger A, Gramatzki MM: Pretherapeutic identification of high-risk acute myeloid leukemia (AML) patients from immunophenotypic, cytogenetic, and clinical parameters. Cytometry B Clin. Cytom. 53, 4–10 (2003).
  • Faenza I, Matteucci A, Bavelloni A et al.: Nuclear PLC (1) acts as a negative regulator of p45/NF-E2 expression levels in Friend erythroleukemia cells. Biochim. Biophys. Acta 1589, 305–310 (2002).
  • Faenza I, Matteucci A, Manzoli L et al.: A role for nuclear phospholipase C 1 in cell cycle control. J. Biol. Chem. 275, 30520–30524 (2000).
  • Lents NH, Baldassare JJ: CDK2 and cyclin E knockout mice: lessons from breast cancer. Trends Endocrinol. Metab. 15, 1–3 (2004).
  • Gladden AB, Woolery R, Aggarwal P, Wasik MA, Diehl JA: Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene 25, 998–1007 (2006).
  • Bavelloni A, Faenza I, Cioffi G et al.: Proteomic-based analysis of nuclear signaling: PLC 1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells. Proteomics 6, 5725–5734 (2006).
  • Saeki K, Yasugi E, Okuma E et al.: Proteomic analysis on insulin signaling in human hematopoietic cells: identification of CLIC1 and SRp20 as novel downstream effectors of insulin. Am. J. Physiol. Endocrinol. Metab. 289, E419–E428 (2005).
  • Brazil DP, Yang ZZ, Hemmings BA: Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004).
  • Roymans D, Slegers, H: Phosphatidylinositol 3-kinases in tumor progression. Eur. J. Biochem. 268, 487–498 (2001).
  • Bertagnolo V, Brugnoli F, Marchisio M, Capitani S: Inositide-modifying enzymes: a cooperative role in regulating nuclear morphology during differentiation of myeloid cells. J. Biol. Regul. Homeost. Agents 18, 381–386 (2004).
  • Martelli AM, Nyakern M, Tabellini G et al.: Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20, 911–928 (2006).
  • Bertagnolo V, Neri LM, Marchisio M, Mischiati C, Capitani S: Phosphoinositide 3-kinase activity is essential for all-transretinoic acid-induced granulocytic differentiation of HL-60 cells. Cancer Res. 59, 542–546 (1999).
  • Bavelloni A, Santi S, Sirri A et al.: Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells. J. Cell Sci. 112(Pt 5), 631–640 (1999).
  • Toker A, Yoeli-Lerner M: Akt signaling and cancer: surviving but not moving on. Cancer Res. 66, 3963–3966 (2006).
  • Akt1 may have a dual role in tumorigenesis, acting not only prooncogenically by suppressing apoptosis but also antioncogenically by suppressing invasion and metastasis. The authors discuss the possible implications of these findings for therapeutic development of Akt inhibitors to treat cancer.
  • Maehama T, Taylor GS, Dixon JE: PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70, 247–279 (2001).
  • Waite KA, Eng C: Protean PTEN: form and function. Am. J. Hum. Genet. 70, 829–844 (2002).
  • Leslie NR, Downes CP: PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382, 1–11 (2004).
  • Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB: PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J. Biol. Chem. 277, 5484–5489 (2002).
  • Bonneau D, Longy M: Mutations of the human PTEN gene. Hum. Mutat. 16, 109–122 (2000).
  • Maehama T, Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).
  • Gimm O, Perren A, Weng LP et al.: Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol. 156, 1693–1700 (2000).
  • Lachyankar MB, Sultana N, Schonhoff CM et al.: A role for nuclear PTEN in neuronal differentiation. J. Neurosci. 20, 1404–1413 (2000).
  • Baker SJ: PTEN enters the nuclear age. Cell 128, 25–28 (2007).
  • Chung JH, Eng C: Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res. 65, 8096–8100 (2005).
  • Chung JH, Ginn-Pease ME, Eng C: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein.Cancer Res. 65, 4108–4116 (2005).
  • Gil A, Andres-Pons A, Fernandez E et al.: Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis: involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. Mol. Biol. Cell 17, 4002–4013 (2006).
  • Indicates that multiple nuclear exclusion motifs and a nuclear localization domain control phosphatase and tensin homolog deleted on chromosome ten (PTEN) nuclear localization by a Ran-dependent mechanism and suggests a proapoptotic role for PTEN in the cell nucleus.
  • Shen WH, Balajee AS, Wang J et al.: Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128, 157–170 (2007).
  • Lindsay Y, McCoull D, Davidson L et al.: Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J. Cell Sci. 119, 5160–5168 (2006).
  • Denning G, Jean-Joseph B, Prince C, Durden DL, Vogt PK: A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth. Oncogene (2007) (Epub ahead of print).
  • Sansal I, Sellers WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).
  • Whiteman DC, Zhou XP, Cummings MC et al.: Nuclear PTEN expression and clinicopathologic features in a population-based series of primary cutaneous melanoma. Int. J. Cancer 99, 63–67 (2002).
  • Ginn-Pease ME, Eng C: Increased nuclear phosphatase and tensin homologue deleted on chromosome 10 is associated with G0-G1 in MCF-7 cells. Cancer Res. 63, 282–286 (2003).
  • McCubrey JA, Steelman LS, Abrams SL et al.: Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul. 46, 249–279 (2006).
  • Provides a wide and detailed analysis on how the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal regulated kinase and Ras/phosphoinositide-3 kinase/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis.
  • Liu JL, Sheng X, Hortobagyi ZK et al.: Nuclear PTEN-mediated growth suppression is independent of Akt down-regulation. Mol. Cell. Biol. 25, 6211–6224 (2005).
  • Vasko V, Saji M, Hardy E et al.: Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J. Med. Genet. 41, 161–170 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.