125
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Lysophospholipids: Two-Faced Mediators In Atherosclerosis

, , &
Pages 341-356 | Published online: 18 Jan 2017

Bibliography

  • 1. Gennero I, Xuereb JM, Simon MF et al.: Effects of lysophosphatidic acid on proliferation and cytosolic Ca2+ of human adult vascular smooth muscle cells in culture. Thromb. Res. 94, 317–326 (1999).
  • Natarajan V, Scribner WM, Hart CM, Parthasarathy S: Oxidized low density lipoprotein-mediated activation of phospholipase D in smooth muscle cells: a possible role in cell proliferation and atherogenesis. J. Lipid Res. 36, 2005–2016 (1995).
  • Tokumura A, Iimori M, Nishioka Y, Kitahara M, Sakashita M, Tanaka S: Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am. J. Physiol. 267, C204–C210 (1994).
  • Moolenaar WH: Lysophosphatidic acid signalling. Curr. Opin. Cell Biol. 7, 203–210 (1995).
  • Siess W, Zangl KJ, Essler M et al.: Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc. Natl Acad. Sci. USA 96, 6931–6936 (1999).
  • First paper to identify lysophosphatidic acid (LPA), accumulated in human atherosclerotic lesions, as a major thrombogenic agent and to establish its effects on platelets.
  • Haserück N, Erl W, Pandey D et al.: The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet–monocyte aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors. Blood 103, 2585–2592 (2004).
  • Ridley AJ, Hall A: The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).
  • Fukushima N, Kimura Y, Chun J: A single receptor encoded by Vzg-1/LPA1/Edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc. Natl Acad. Sci. USA 95, 6151–6156 (1998).
  • Contos JJ, Ishii I, Chun J: Lysophosphatidic acid receptors. Mol. Pharmacol. 58, 1188–1196 (2000).
  • Ishii I, Fukushima N, Ye X, Chun J: Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem. 73, 321–354 (2004).
  • Gobeil Jr F, Bernier SG, Vazquez-Tello A et al.: Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J. Biol. Chem. 278(40), 37875–38883 (2003).
  • Noguchi K, Ishii S, Shimizu T: Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J. Biol. Chem. 278(28), 25600–25606 (2003).
  • Kotarsky K, Boketoft Å, Bristulf J et al.: Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J. Pharmacol. Exp. Ther. 318(2), 619–628 (2006).
  • McIntyre TM, Ponstler AV, Silva AR et al.: Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPAR agonist. Proc. Natl Acad. Sci. USA 100(1), 131–136 (2003).
  • Highlights that LPA can exert its effects not only by interacting with extracellular but also with intracellular receptors.
  • Anliker B, Chun J: Lysophospholipid G protein-coupled receptors. J. Biol. Chem. 279, 20555–20558 (2004).
  • Uhlenbrock K, Gassenhuber H, Kostenis E: Sphingosine 1-phosphate is a ligand of the human GPR3, GPR6 and GPR12 family of constitutively active G protein-coupled receptors. Cell Signal. 14, 941–953 (2002).
  • Niedernberg A, Tunaru S, Blaukat A, Ardati A, Kostenis E: Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell Signal. 15, 435–446 (2003). 18. Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ: Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotype dilution electrospray ionization liquid chromatography-mass spectrometry. Anal. Biochem. 292, 287–295 (2001).
  • Provides a quantitative characterization of the LPA species present in human serum and plasma.
  • Siess W, Tigyi G: Thrombogenic and atherogenic activities of lysophosphatidic acid. J. Cell Biochem. 92, 1086–1094 (2004).
  • Moolenaar WH, van Meeteren LA, Giepmans BNG: The ins and outs of lysophosphatidic acid signalling. Bioessays 26, 870–881 (2004).
  • Sano T, Baker D, Virag T et al.: Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J. Biol. Chem. 277(24), 21197–21206 (2002).
  • Describes the main production pathways of LPA after platelet activation and refutes the prior notion that LPA is produced and secreted by platelets.
  • Aoki J, Taira A, Takanezawa Y et al.: Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J. Biol. Chem. 277(50), 48737–48744 (2002).
  • Aoki J: Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 15(5), 477–489 (2004).
  • Pyne S, Kong KC, Darroch PI: Lysophosphatidic acid and sphingosine 1-phosphate biology: the role of lipid phosphate phosphatases. Semin. Cell Dev. Biol. 15(5), 491–501 (2004).
  • Haldar D, Vancura A: Glycerophosphate acyltransferase from liver. Methods Enzymol. 209, 64–72 (1992).
  • Pagès C, Simon MF, Valet P, Saulnier-Blache JS: Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat. 64, 1–10 (2001).
  • Eberhardt C, Gray PW, Tjoelker LW: Human lysophosphatidic acid acyltransferase. J. Biol. Chem. 272(32), 20299–20305 (1997).
  • Yatomi Y, Igarashi Y, Yang L et al.: Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J. Biochem. 121, 969–973 (1997).
  • Murata N, Sato K, Kon J, et al.: Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352, 809–815 (2000).
  • Tamama K, Okajima F: Sphingosine 1-phosphate signaling in atherosclerosis and vascular biology. Curr. Opin. Lipidol. 13, 489–495 (2002).
  • Taha TA, Hannun YA, Obeid LM: Sphingosine kinase: biochemical and cellular regulation and role in disease. J. Biochem. Mol. Biol. 39, 113–131 (2006).
  • Maceyka M, Sankala H, Hait NC et al.: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280(44), 37118–37129 (2005).
  • Venkataraman K, Thangada S, Michaud J et al.: Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem. J. 397, 461–471 (2006).
  • Clair T, Aoki J, Koh E et al.: Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res. 63, 5446–5453 (2003).
  • Spiegel S, Milstien S: Sphingosine 1-phosphate: an enigmatic signaling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407 (2003).
  • Yatomi Y, Ohmori T, Rile G et al.: Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 96, 3431–3438 (2000).
  • This elegant study is the first to identify erythrocytes as a major source of sphingosine 1-phosphate (S1P) in plasma and casts doubt on the prevaling theory that plasma S1P originates from platelets.
  • Hänel P, Andréani P, Gräler MH: Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J. 21(4), 1202–1209 (2007).
  • In this study, the long sought after transplasma membrane S1P transporter has been identified as ATP binding cassette C1 – a protein previously recognized for its ability to export antitumor drugs and leukotriene C4.
  • Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S: Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl Acad. Sci. USA 103(44), 16394–16399 (2006).
  • Rosengren B, Peilot H, Jonsson-Rylander AC et al.: Secretory phospholipase A2 group V: lesion distribution, activation by arterial proteoglycans, and induction in aorta by a Western diet. Arterioscler. Thromb. Vasc. Biol. 26(7), 1579–1585 (2006).
  • Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V: Neovascularization in human atherosclerosis. Circulation 113, 2245–2252 (2006).
  • Siess W: Athero- and thrombogenic actions of lysophosphatidic acid and sphingosine-1- phosphate. Biochim. Biophys. Acta 1582, 204–215 (2002).
  • Simon MF, Chap H, Douste-Blazy L: Human platelet aggregation induced by 1-alkyl-lysophosphatidic acid and its analogs: a new group of phospholipid mediators? Biochem. Biophys. Res. Com. 108(4), 1743–1750 (1982).
  • Tokumura A, Sinomiya J, Kishimoto S et al.: Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids. Biochem. J. 365, 617–628 (2002).
  • Rother E, Brandl R, Baker DL et al.: Subtype-selective antagonists of lysophosphatidic acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques. Circulation 108, 741–747 (2003).
  • Van Nieuw Amerongen GP, Vermeer MA, Hinsbergh VWM: Role of rhoA and rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler. Thromb. Vasc. Biol. 20, E127–E133 (2000).
  • Palmetshofer A, Robson SC, Nehls V: Lysophosphatidic acid activates nuclear factor- B and induces proinflammatory gene expression in endothelial cells. Thromb. Haemost. 82, 1532–1537 (1999).
  • Rizza C, Leitinger N, Yue J et al.: Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction. Lab. Invest. 79, 1227–1235 (1999).
  • Gräler M, Goetzl EJ: Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim. Biophys. Acta 1582, 168–174 (2002).
  • Bagga S, Price KS, Lin DA, Friend DS, Austen KF, Boyce JA: Lysophosphatidic acid accelerates the development of human mast cells. Blood 104(13), 4080–4087 (2004).
  • Fueller M, Wang DA, Tigyi G, Siess W: Activation of human monocytic cells by lysophosphatidic acid and sphingosine- 1-phosphate. Cell Signal. 15, 367–375 (2003).
  • D’Aquilio F, Procaccini M, Izzi V et al.: Activatory properties of lysophosphatidic acid on human THP-1 cells. Inflammation 29(4–6), 129–140 (2005).
  • Llodrá J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ: Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101(32), 11779–11784 (2004).
  • Weber C, Alon R, Moser B, Springer TA: Sequential regulation of 4 1 and 5 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J. Cell Biol. 134(4) 1063–1073 (1996).
  • Doherty TM, Fisher EA, Arditi M: TLR signalling and trapped vascular dendritic cells in the development of atherosclerosis. Trends Immunol. 27(5), 222–227 (2006).
  • Panther E, Idzko M, Corinti S et al.: The influence of lysophosphatidic acid on the functions of human dendritic cells. J. Immunol. 169, 4129–4135 (2002).
  • Renkl A, Berod L, Mockenhaupt M et al.: Distinct effects of sphingosine 1-phosphate, lysophosphatidic acid and histamine in human and mouse dendritic cells. Int. J. Mol. Med. 13, 203–209 (2004).
  • Chen R, Roman J, Guo J et al.: Lysophosphatidic acid modulates the activation of human monocyte-derived dendritic cells. Stem Cells Dev. 15(6), 797–804 (2006).
  • Kaartinen M, Pentillä A, Kovanen PT: Mast cells accompany microvessels in human coronary atheromas: implications for intimal neovascularization and hemorrhage. Atherosclerosis 123(1–2), 123–131 (1996).
  • Hashimoto T, Ohata H, Honda K: Lysophosphatidic acid induces plasma exudation and histamine release in mice via lysophosphatidic acid receptors. J. Pharmacol. Sci. 100(1), 82–87 (2006).
  • Lin DA, Boyce JA: IL-4 regulates MEK expression required for lysophophatidic acid-mediated chemokine generation by human mast cells. J. Immunol. 175, 5430–5438 (2005).
  • Hayashi K, Takahashi M, Nishida W et al.: Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ. Res. 89, 251–258 (2001).
  • Ai S, Kuzuya M, Koike T et al.: Rho–Rho kinase is involved in smooth muscle cell migration through myosin light chain phosphorylation-dependent and independent pathways. Atherosclerosis 155, 321–327 (2001).
  • Cui MZ, Zhao G, Winokur AL et al.: Lysophosphatidic acid induction of tissue factor expression in aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 23, 224–230 (2003).
  • Conclusively established that LPA can, via peroxisome proliferator-activated receptor (PPAR)γ activation, influence vascular tissue remodeling, which is of great importance in atherosclerotic lesion development.
  • Zhang C, Baker DL, Yasuda S et al.: Lysophosphatidic acid induces neointima formation through PPAR activation. J. Exp. Med. 199(6), 763–774 (2004).
  • Conclusively established that LPA can, via PPARγ activation, influence vascular tissue remodeling, which is of great importance in atherosclerotic lesion development.
  • Yoshida K, Nishida W, Hayashi K et al.: Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo. Circulation 108, 1746–1752 (2003).
  • Keul P, Tolle M, Lucke S et al.: The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27(3), 607–613 (2007).
  • These reports are the first to demonstrate the atheroprotective effect of a synthetic S1P analogue, FTY720, in two distinct animal models of disease.
  • Nofer JR, Bot M, Brodde M et al.: FTY720, a synthetic sphingosine 1-phosphate (S1P) analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115(4), 501–508 (2007).
  • Payne SG, Oskeritzian CA, Griffiths R et al.: The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine 1-phoshate receptors. Blood 109(3), 1077–1085 (2007).
  • Gräler MH, Shankar G, Goetzl EJ: Cutting edge: suppression of T cell chemotaxis by sphingosine 1-phosphate. J. Immunol. 169, 4084–4087 (2002).
  • Gräler MH, Huang MC, Watson S, Goetzl EJ: Immunological effects of transgenic constitutive expression of the type 1 sphingosine 1-phosphate receptor by mouse lymphocytes. J. Immunol. 174, 1997–2003 (2005).
  • Paust S, Cantor H: Regulatory T cells and autoimmune disease. Immunol. Rev. 204, 195–207 (2005).
  • Wang W, Graeler M, Goetzl EJ: Physiological sphingosine 1-phosphate requirement for optimal activity of mouse CD4+ regulatory T cells. FASEB J. 18, 1043–1045 (2004).
  • Ait-Oufella H, Salomon BL, Potteaux S et al.: Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12(2), 78–80 (2006).
  • Rosen H, Goetzl EJ: Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. Immunol. 5(7), 560–570 (2005).
  • Mandala S, Hajdu R, Bergstrom J et al.: Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).
  • Wei SH, Rosen H, Matheu MP et al.: Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6, 1228–1235 (2005).
  • Klingenberg R, Bea F, Blessing E et al.: The immunomodulator FTY720 inhibits early atherosclerosis in ApoE-/- mice. Atherosclerosis 7, 276 (2006).
  • Duong CQ, Bared SM, Abu-Khader A, Buechler C, Schmitz A, Schmitz G: Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages. Biochim. Biophys. Acta 1682, 112–119 (2004).
  • Gomez-Munoz A, Kong J, Salh B, Steinbrecher UP: Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett. 539, 56–60 (2003).
  • Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brune B: Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood 108, 1635–1642 (2006).
  • Stoneman VE, Bennett MR: Role of apoptosis in atherosclerosis and its therapeutic implications. Clin. Sci. (Lond). 107, 343–354 (2004).
  • Eigenbrod S, Derwand R, Jakl V, Endres S, Eigler A: Sphingosine kinase a nd sphingosine 1-phosphate regulate migration, endocytosis and apoptosis of dendritic cells. Immunol. Invest. 35, 149–165 (2006).
  • Olivera A, Mizugishi K, Tikhonova A et al.: The sphingosine kinase-sphingosine-1- phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26, 287–297 (2007).
  • Jolly PS, Bektas M, Olivera A et al.: Transactivation of sphingosine-1-phosphate receptors by FC RI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 199(7), 959–970 (2004).
  • Kluk MJ, Hla T: Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim. Biophys. Acta 1582, 72–80 (2002).
  • Garcia JG, Liu F, Verin AD et al.: Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Invest. 108, 689–701 (2001).
  • Peng X, Hassoun PM, Sammani S et al.: Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am. J. Respir. Crit. Care Med. 169, 1245–1251 (2004).
  • Dudek SM, Peng X, Birukov KG et al.: Mechanisms of sphingosine 1-phosphate mediated lung vascular barrier enhancement in vivo and in vitro. J. Biol. Chem. 279(23), 24692–24700 (2004).
  • Singleton PA, Dudek SM, Chiang ET, Garcia JG: Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and -actinin. FASEB J. 19, 1646–1656 (2005).
  • Singleton PA, Dudek SM, Ma SF, Garcia JG: Transactivation of sphingosine-1-phosphate receptors is essential for vascular barrier regulation: novel role for hyaluronan and CD44 receptor family. J. Biol. Chem. 281(45), 34381–34391 (2006).
  • Kimura T, Watanabe T, Sato K et al.: Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem. J. 348, 71–76 (2000).
  • Kimura T, Sato K, Malchinkhuu E et al.: High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler. Thromb. Vasc. Biol. 23, 1283–1288 (2003).
  • Panetti TS, Nowlen J, Mosher DF: Sphingosine-1-phosphate and lysophosphatidic acid stimulate endothelial cell migration. Arterioscler. Thromb. Vasc. Biol. 20, 1013–1019 (2000).
  • Sanchez T, Thangada S, Wu MT et al.: PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc. Natl Acad. Sci. USA 102, 4312–4317 (2005).
  • Paik JH, Chae S, Lee MJ, Thangada S, Hla T: Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of Edg-1 and Edg-3 receptors and Rho-dependent activation of v 3- and 1-containing integrins. J. Biol. Chem. 276, 11830–11837 (2001).
  • Walter DH, Rochwalsky U, Reinhold J et al.: Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler. Thromb. Vasc. Biol. 27(2), 275–282 (2007).
  • Miura S, Tanigawa H, Matsuo Y, Fujino M, Kawamura A, Saku K: Ras/Raf1-dependent signal in sphingosine-1-phosphate-induced tube formation in human coronary artery endothelial cells. Biochem. Biophys. Res. Commun. 306, 924–929 (2003).
  • Matsuo Y, Miura SI, Kawamura A, Uehara Y, Rye KA, Saku K. Newly developed reconstituted high-density lipoprotein containing sphingosine-1-phosphate induces endothelial tube formation. Atherosclerosis (2007) (Epub ahead of print).
  • Fieber CB, Eldridge J, Taha TA, Obeid LM, Muise-Helmericks RC: Modulation of total Akt kinase by increased expression of a single isoform: requirement of the sphingosine-1-phosphate receptor, Edg3/S1P3, for the VEGF-dependent expression of Akt3 in primary endothelial cells. Exp. Cell Res. 312, 1164–1173 (2006).
  • Nofer JR, van der Giet M, Tolle M et al.: HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 113, 569–581 (2004).
  • Tolle M, Levkau B, Keul P et al.: Immunomodulator FTY720 induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ. Res. 96, 913–920 (2005).
  • Kimura T, Tomura H, Mogi C et al.: Sphingosine 1-phosphate receptors mediate stimulatory and inhibitory signalings for expression of adhesion molecules in endothelial cells. Cell Signal. 18, 841–850 (2006).
  • Bolick DT, Srinivasan S, Kim KW et al.: Sphingosine-1-phosphate prevents tumor necrosis factor- mediated monocyte adhesion to aortic endothelium in mice. Arterioscler. Thromb. Vasc. Biol. 25, 976–981 (2005).
  • Whetzel AM, Bolick DT, Srinivasan S et al.: Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ. Res. 99, 731–739 (2006).
  • Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM, Mack CP: Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J. Biol. Chem. 279, 42422–42430 (2004).
  • Tanimoto T, Lungu AO, Berk BC: Sphingosine 1-phosphate transactivates the platelet-derived growth factor receptor and epidermal growth factor receptor in vascular smooth muscle cells. Circ. Res. 94, 1050–1058 (2004).
  • Waters CM, Long J, Gorshkova I et al.: Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. FASEB J. 20, 509–511 (2006).
  • Ryu Y, Takuwa N, Sugimoto N et al.: Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ. Res. 90, 325–332 (2002).
  • Tamama K, Tomura H, Sato K et al.: High-density lipoprotein inhibits migration of vascular smooth muscle cells through its sphingosine 1-phosphate component. Atherosclerosis 178, 19–23 (2005).
  • Pettus BJ, Bielawski J, Porcelli AM et al.: The sphingosine kinase 1/sphingosine-1- phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF . FASEB J. 17, 1411–1421 (2003).
  • Elegantly delineates the astonishingly complex interplay between S1P and ceramide 1-phosphate, another extra- and intracellular bioactive lipid, in the regulation of cyclooxygenase-2-mediated production of proinflammatory mediators.
  • Pettus BJ, Kitatani K, Chalfant CE et al.: The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol. Pharmacol. 68(2), 330–335 (2005).
  • Elegantly delineates the astonishingly complex interplay between S1P and ceramide 1-phosphate, another extra- and intracellular bioactive lipid, in the regulation of cyclooxygenase-2-mediated production of proinflammatory mediators.
  • Corcoran ML, Stetler-Stevenson WG, DeWitt DL et al.: Effect of cholera toxin and pertussis toxin on prostaglandin H synthase-2, prostaglandin E2 and matrix metalloproteinases production by human monocytes. Arch. Biochem. Biophys. 310, 481–488 (1994).
  • Elegantly delineates the astonishingly complex interplay between S1P and ceramide 1-phosphate, another extra- and intracellular bioactive lipid, in the regulation of cyclooxygenase-2-mediated production of proinflammatory mediators.
  • Cipollone F, Fazia ML: COX-2 and atherosclerosis. J. Cardiovasc. Pharmacol. 47(Suppl. 1), S26–S36 (2006).
  • Ki SH, Choi MJ, Lee CH, Kim SG: G 12 specifically regulates COX-2 induction by sphingosine 1-phosphate: role for JNK-dependent ubiguitination and degradation of I B . J. Biol. Chem. 282(3), 1983–1947 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.