168
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Niemann–Pick Type C Disease Proteins: Orphan Transporters Or Membrane Rheostats?

, &
Pages 357-367 | Published online: 18 Jan 2017

Bibliography

  • Lee MC, Miller EA, Goldberg J, Orci L, Schekman R: Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).
  • Higaki K, Almanzar-Paramio D, Sturley SL: Metazoan and microbial models of Niemann–Pick type C disease. Biochim. Biophys. Acta 1685, 38–47 (2004).
  • Sturley SL, Patterson MC, Balch W, Liscum L: The pathophysiology and mechanisms of NP-C disease. Biochim. Biophys. Acta 1685, 83–87 (2004).
  • Liscum L, Sturley SL: Intracellular trafficking of Niemann–Pick C proteins 1 and 2: obligate components of subcellular lipid transport. Biochim. Biophys. Acta 1685, 22–27 (2004).
  • Koudinov AR, Koudinova NV: Cholesterol homeostasis failure as a unifying cause of synaptic degeneration. J. Neurol. Sci. 229–230, 233–240 (2005).
  • Valenza M, Cattaneo E: Cholesterol dysfunction in neurodegenerative diseases: is Huntington's disease in the list? Prog. Neurobiol. 80, 165–176 (2006).
  • Pentchev PG: Niemann–Pick C research from mouse to gene. Biochim. Biophys. Acta 1685, 3–7 (2004).
  • Neufeld EB, Wastney M, Patel S et al.: The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J. Biol. Chem. 274, 9627–9635 (1999).
  • Sun X, Marks DL, Park WD et al.: Niemann–Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am. J. Hum. Genet. 68, 1361–1372 (2001).
  • Carstea ED, Morris JA, Coleman KG et al.: Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).
  • Isolation of human Niemann–Pick type C (NPC)1, the gene defective in the majority of patients with NPC disease.
  • Millard EE, Gale SE, Dudley N, Zhang J, Schaffer JE, Ory DS: The sterol-sensing domain of the Niemann–Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol. J. Biol. Chem. 280, 28581–28590 (2005).
  • Malathi K, Higaki K, Tinkelenberg AH et al.: Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J. Cell Biol. 164, 547–556 (2004).
  • Dominant mutation in the yeast ortholog elevates sphingolipid metabolism to the status as the primordial metabolite of relevance to NPC disease.
  • Millat G, Marcais C, Tomasetto C et al.: Niemann–Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am. J. Hum. Genet. 68, 1373–1385 (2001).
  • Greer WL, Dobson MJ, Girouard GS, Byers DM, Riddell DC, Neumann PE: Mutations in NPC1 highlight a conserved NPC1-specific cysteine-rich domain. Am. J. Hum. Genet. 65, 1252–1260 (1999).
  • Park WD, O’Brien JF, Lundquist PA et al.: Identification of 58 novel mutations in Niemann–Pick disease type C: correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum. Mutat. 22, 313–325 (2003).
  • Naureckiene S, Sleat DE, Lackland H et al.: Identification of HE1 as the second gene of Niemann–Pick C disease. Science 290, 2298–2301 (2000).
  • Isolation of NPC2, the gene defective in the minority of individuals with NPC disease.
  • Friedland N, Liou HL, Lobel P, Stock AM: Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. Proc. Natl Acad. Sci. USA 100, 2512–2517 (2003).
  • Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J: Mechanism of cholesterol transfer from the Niemann–Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J. Biol. Chem. 281, 31594–31604 (2006).
  • Liou HL, Dixit SS, Xu S, Tint GS, Stock AM, Lobel P: NPC2, the protein deficient in Niemann–Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J. Biol. Chem. 281, 36710–36723 (2006).
  • Schrantz N, Sagiv Y, Liu Y, Savage PB, Bendelac A, Teyton L: The Niemann–Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. J. Exp. Med. 204, 841–852 (2007).
  • Sleat DE, Wiseman JA, El-Banna M et al.: Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl Acad. Sci. USA 101, 5886–5891 (2004).
  • Davies JP, Chen FW, Ioannou YA: Transmembrane molecular pump activity of Niemann–Pick C1 protein. Science 290, 2295–2298 (2000).
  • Sequence conservations suggest that NPC1 is a permease.
  • Scott C, Ioannou YA: The NPC1 protein: structure implies function. Biochim. Biophys. Acta 1685, 8–13 (2004).
  • Passeggio J, Liscum L: Flux of fatty acids through NPC1 lysosomes. J. Biol. Chem. 280, 10333–10339 (2005).
  • Chen FW, Gordon RE, Ioannou YA: NPC1 late endosomes contain elevated levels of non-esterified (‘free’) fatty acids and an abnormally glycosylated form of the NPC2 protein. Biochem. J. 390, 549–561 (2005).
  • Millat G, Chikh K, Naureckiene S et al.: Niemann–Pick disease type C: spectrum of HE1 mutations and genotype/phenotype correlations in the NPC2 group. Am. J. Hum. Genet. 69, 1013–1021 (2001).
  • Garcia-Calvo M, Lisnock J, Bull HG et al.: The target of ezetimibe is Niemann–Pick C1-Like 1 (NPC1L1). Proc. Natl Acad. Sci. USA 102, 8132–8137 (2005).
  • Walkley SU, Suzuki K: Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim. Biophys. Acta 1685, 48–62 (2004).
  • Berger AC, Vanderford TH, Gernert KM, Nichols JW, Faundez V, Corbett AH: Saccharomyces cerevisiae Npc2p is a functionally conserved homologue of the human Niemann–Pick disease type C 2 protein, hNPC2. Eukaryot. Cell 4, 1851–1862 (2005).
  • Sym M, Basson M, Johnson C: A model for Niemann–Pick type C disease in the nematode Caenorhabditis elegans. Curr. Biol. 10, 527–530 (2000).
  • Huang X, Suyama K, Buchanan J, Zhu AJ, Scott MP: A Drosophila model of the Niemann–Pick type C lysosome storage disease: dnpc1a is required for molting and sterol homeostasis. Development 132, 5115–5124 (2005).
  • Fluegel ML, Parker TJ, Pallanck LJ: Mutations of a Drosophila NPC1 gene confer sterol and ecdysone metabolic defects. Genetics 172, 185–196 (2006).
  • Altmann SW, Davis HR Jr, Zhu LJ et al.: Niemann–Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).
  • A paralog of NPC1 is implicated in sterol absorption in humans and mice and as the putative target of ezetimide, an inhibitor of dietary sterol absorption.
  • Voght SP, Fluegel ML, Andrews LA, Pallanck LJ: Drosophila NPC1b promotes an early step in sterol absorption from the midgut epithelium. Cell Metab. 5, 195–205 (2007).
  • Zhang S, Ren J, Li H et al.: Ncr1p, the yeast ortholog of mammalian Niemann Pick C1 protein, is dispensable for endocytic transport. Traffic 5, 1017–1030 (2004).
  • Berger AC, Hanson PK, Wylie Nichols J, Corbett AH: A yeast model system for functional analysis of the Niemann–Pick type C protein 1 homolog, Ncr1p. Traffic 6, 907–917 (2005).
  • Ohgami N, Ko DC, Thomas M, Scott MP, Chang CC, Chang TY: Binding between the Niemann–Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc. Natl Acad. Sci. USA 101, 12473–12478 (2004).
  • Ko DC, Binkley J, Sidow A, Scott MP: The integrity of a cholesterol-binding pocket in Niemann–Pick C2 protein is necessary to control lysosome cholesterol levels. Proc. Natl Acad. Sci. USA 100, 2518–2525 (2003).
  • Patterson MC, Di Bisceglie AM, Higgins JJ et al.: The effect of cholesterol-lowering agents on hepatic and plasma cholesterol in Niemann–Pick disease type C. Neurology 43, 61–64 (1993).
  • Somers KL, Wenger DA, Royals MA et al.: Complementation studies in human and feline Niemann–Pick type C disease. Mol. Genet. Metab. 66, 117–121 (1999).
  • Hsu YS, Hwu WL, Huang SF et al.: Niemann–Pick disease type C (a cellular cholesterol lipidosis) treated by bone marrow transplantation. Bone Marrow Transplant. 24, 103–107 (1999).
  • Xie C, Burns DK, Turley SD, Dietschy JM: Cholesterol is sequestered in the brains of mice with Niemann–Pick type C disease but turnover is increased. J. Neuropathol. Exp. Neurol. 59, 1106–1117 (2000).
  • Zervas M, Somers KL, Thrall MA, Walkley SU: Critical role for glycosphingolipids in Niemann–Pick disease type C. Curr. Biol. 11, 1283–1287 (2001).
  • Inhibition of ganglioside biosynthesis ameliorates disease symptoms and extends age of onset in mice.
  • Lachmann RH, te Vruchte D, Lloyd-Evans E et al.: Treatment with miglustat reverses the lipid-trafficking defect in Niemann–Pick disease type C. Neurobiol. Dis. 16, 654–658 (2004).
  • Henderson LP, Lin L, Prasad A, Paul CA, Chang TY, Maue RA: Embryonic striatal neurons from Niemann–Pick type C mice exhibit defects in cholesterol metabolism and neurotrophin responsiveness. J. Biol. Chem. 275(26), 20179–20187 (2000).
  • Griffin LD, Gong W, Verot L, Mellon SH: Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat. Med. 10, 704–711 (2004).
  • Neurosteroid supplementation from day 7 markedly alleviates disease symptoms in mice.
  • Ory DS: Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Circ. Res. 95, 660–670 (2004).
  • Millat G, Bailo N, Molinero S, Rodriguez C, Chikh K, Vanier MT: Niemann–Pick C disease: use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol. Genet. Metab. 86, 220–232 (2005).
  • Imrie J, Dasgupta S, Besley GT et al.: The natural history of Niemann–Pick disease type C in the UK. J. Inherit. Metab. Dis. 30(1), 51–59 (2006).
  • Bauer P, Knoblich R, Bauer C et al.: NPC1: complete genomic sequence, mutation analysis, and characterization of haplotypes. Hum. Mutat. 19, 30–38 (2002).
  • Reddy JV, Ganley IG, Pfeffer SR: Clues to neuro-degeneration in Niemann–Pick type C disease from global gene expression profiling. PLoS ONE 1, E19 (2006).
  • Ganley IG, Pfeffer SR: Cholesterol accumulation sequesters Rab9 and disrupts late endosome function in NPC1-deficient cells. J. Biol. Chem. 281, 17890–17899 (2006).
  • Bascunan-Castillo EC, Erickson RP, Howison CM et al.: Tamoxifen and vitamin E treatments delay symptoms in the mouse model of Niemann–Pick C. J. Appl. Genet. 45, 461–467 (2004).
  • Langmade SJ, Gale SE, Frolov A et al.: Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann–Pick C disease. Proc. Natl Acad. Sci. USA 103, 13807–13812 (2006).
  • Davies JP, Ioannou YA: Topological analysis of Niemann–Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J. Biol. Chem. 275, 24367–24374 (2000).
  • Hogue CW: Cn3D: a new generation of three-dimensional molecular structure viewer. Trends Biochem. Sci. 22, 314–316 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.