134
Views
1
CrossRef citations to date
0
Altmetric
Research Focus

GPIHBP1: a new chylomicronemia gene

, , , , , , & show all
Pages 203-216 | Published online: 18 Jan 2017

Bibliography

  • Beigneux A, Davies B, Gin P et al.: Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 5, 279–291 (2007).
  • Shows that mice lacking GPIHBP1 have chylomicronemia. Article also demonstrates that GPIHBP1 is located along the luminal surface of capillaries, and that this molecule binds lipoprotein lipase and chylomicrons.
  • Wang J, Hegele RA: Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis. 6, 23 (2007).
  • Genomic DNA of 160 patients with chylomicronemia were screened (and more than 1200 control subjects) for coding-region mutations in GPIHBP1. One subject with chylomicronemia who was homozgygous for a G56R mutation in GPIHBP1 was identified. A sibling with chylomicronemia was also homozygous for the same mutation.
  • Havel RJ, Gordon RS Jr: Idiopathic hyperlipemia: metabolic studies in an affected family. J. Clin. Invest. 39, 1777–1790 (1960)
  • Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M: Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N. Engl. J. Med. 298, 1265–1273 (1978)
  • Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL: Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249, 790–793 (1990)
  • Pennacchio LA, Olivier M, Hubacek JA et al.: An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294, 169–173 (2001)
  • Koishi R, Ando Y, Ono M et al.: Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30, 151–157 (2002)
  • Yoshida K, Shimizugawa T, Ono V, Furukawa H: Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J. Lipid Res. 43, 1770–1772 (2002)
  • Young S, Davies BSJ, Fong LG et al.: GPIHBP1 – an endothelial cell molecule required for the lipolytic processing of chylomicrons. Curr. Opin Lipidol. 18, 389–396 (2007)
  • Havel RJ, Kane JP: Introduction: structure and metabolism of plasma lipoproteins. In: The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Beaudet AL, Sly WS et al. (Eds). McGraw-Hill, NY, USA 2705–2716 (2001)
  • Kane JP, Havel RJ: Disorders of the biogenesis and secretion of lipoproteins containing the B apolipoproteins. In: The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Beaudet AL, Sly WS et al. (Eds). McGraw-Hill, NY, USA 2717–2752 (2001)
  • Olivecrona T, Bengtsson-Olivecrona G: Lipoprotein lipase and hepatic lipase. Curr. Opin. Lipidol. 1, 222–230 (1990)
  • Bengtsson G, Olivecrona T: Activation of lipoprotein lipase by apolipoprotein CII. Demonstration of an effect of the activator on the binding of the enzyme to milk-fat globules. FEBS Lett. 147, 183–187 (1982)
  • Bengtsson G, Olivecrona T: Lipoprotein lipase: some effects of activator proteins. Eur. J. Biochem. 106, 549–555 (1980)
  • Bengtsson G, Olivecrona T: Apolipoprotein CII enhances hydrolysis of monoglycerides by lipoprotein lipase, but the effect is abolished by fatty acids. FEBS Lett. 106, 345–348 (1979)
  • Weisgraber KH, Rall SC Jr, Mahley RW, Milne RW, Marcel YL, Sparrow JT: Human apolipoprotein E. Determination of the heparin binding sites of apolipoprotein E3. J. Biol. Chem. 261, 2068–2076 (1986)
  • Klinger MM, Margolis RU, Margolis RK: Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipaseagarose. J. Biol. Chem. 260, 4082–4090 (1985)
  • Goldberg IJ: Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37, 693–707 (1996)
  • Mahley RW, Ji Z-S: Remnant lipoprotein metabolism: key pathways involving cellsurface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 40, 1–16 (1999)
  • Mullick AE, Deckelbaum RJ, Goldberg IJ, Al-Haideri M, Rutledge JC: Apolipoprotein E and lipoprotein lipase increase triglyceride-rich particle binding but decrease particle penetration in arterial wall. Arterioscler. Thromb. Vasc. Biol. 22, 2080–2085 (2002)
  • Plump AS, Smith JD, Hayek T et al.: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992)
  • Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622–630 (1988). 23. Herz J: The LDL-receptor-related protein – portrait of a multifunctional receptor. Curr. Opin. Lipidol. 4, 107–113 (1993)
  • Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS: The two-receptor model of lipoprotein clearance: Tests of the hypothesis in ‘knockout’ mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl Acad. Sci. USA 91, 4431–4435 (1994)
  • Choi SY, Fong LG, Kirven MJ, Cooper AD: Use of an anti-low density lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo. J. Clin. Invest. 88, 1173–1183 (1991)
  • Yu KCW, Chen W, Cooper AD: LDL receptor-related protein mediates cellsurface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice. J. Clin. Invest. 107, 1387–1394 (2001)
  • Willnow TE, Sheng Z, Ishibashi S, Herz J: Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264, 1471–1474 (1994)
  • Bensadoun A: Lipoprotein lipase. Annu. Rev. Nutr. 11, 217–237 (1991)
  • Brunzell JD, Deeb SS: Familial lipoprotein lipase deficiency, apo C-II deficiency, and hepatic lipase deficiency. In: The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Beaudet AL, Sly WS et al. (Eds). McGraw-Hill, NY, USA 2789–2816 (2001) 30. Oka K, Wang-Iverson P, Paterniti JR Jr, Brown WV: Interaction of lipoprotein lipase with heparin. Ann. NY Acad. Sci. 556, 173–180 (1989)
  • Rutledge JC, Woo MM, Rezai AA, Curtiss LK, Goldberg IJ: Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ. Res. 80, 819–828 (1997)
  • Ioka RX, Kang M-J, Kamiyama S et al.: Expression cloning and characterization of a novel glycosylphosphatidylinositolanchored high density lipoprotein-binding protein, GPI-HBP1. J. Biol. Chem. 278, 7344–7349 (2003). oo Use of expression cloning to search for molecules that confer upon Chinese hamster ovary cells the ability to bind to HDL. One of the molecules identified in this screen was GPIHBP1, a glycosylphosphatidylinositolanchored protein with a Ly-6 motif. It was suggested that GPIHBP1 was likely important in reverse cholesterol transport. 33. Strauss, JG, Frank S, Kratky D et al.: Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice. J. Biol. Chem. 276, 36083–36090 (2001)
  • Redgrave TG: Formation of cholesteryl ester-rich particulate lipid during metabolism of chylomicrons. J. Clin. Invest. 49, 465–471 (1970)
  • Herz J, Qiu S-Q, Oesterle A, de Silva HV, Shafi S, Havel RJ: Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 92, 4611–4615 (1995)
  • Kompiang IP, Bensadoun A, Yang MW: Effect of an anti-lipoprotein lipase serum on plasma triglyceride removal. J. Lipid Res. 17, 498–505 (1976)
  • Ginsberg HN, Goldberg IJ: Disorders of lipoprotein metabolism. In: Harrison’s Principles of Internal Medicine (14th Edition). Fauci AS, Braunwald E, Isselbacher KJ et al. (Eds). McGraw-Hill, NY, USA 2138–2149 (1998)
  • Ginsberg HN, Goldberg IJ: Disorders of lipoprotein metabolism. In: Harrison’s Principles of Internal Medicine (15th Edition). Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL (Eds). McGraw-Hill, NY, USA 2245–2257 (2001)
  • Wong H, Schotz MC: The lipase gene family. J. Lipid Res. 43, 993–999 (2002)
  • Ben-Zeev O, Doolittle MH, Davis RC, Elovson J, Schotz MC: Maturation of lipoprotein lipase. Expression of full catalytic activity requires glucose trimming but not translocation to the cis-Golgi compartment. J. Biol. Chem. 267, 6219–6227 (1992)
  • Reue K, Doolittle MH: Naturally occurring mutations in mice affecting lipid transport and metabolism. J. Lipid Res. 37, 1387–1405 (1996)
  • Briquet-Laugier V, Ben-Zeev O, White A, Doolittle MH: cld and lec23 are disparate mutations that affect maturation of lipoprotein lipase in the endoplasmic reticulum. J. Lipid Res. 40, 2044–2058 (1999)
  • Peterfy M, Ben-Zeev O, Mao HZ et al.: Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat. Genet. 39, 1483–1487 (2007)
  • Faustinella F, Smith LC, Semenkovich CF, Chan L: Structural and functional roles of highly conserved serines in human lipoprotein lipase. Evidence that serine 132 is essential for enzyme catalysis. J. Biol. Chem. 266, 9481–9485 (1991)
  • Wong H, Davis RC, Nikazy J, Wang KL, Schotz MC: Hepatic- and lipoprotein lipase domain function: assessment by chimeric lipases. Circulation I-608 (1992)
  • Sendak RA, Melford K, Kao A, Bensadoun A: Identification of the epitope of a monoclonal antibody that inhibits heparin binding of lipoprotein lipase: new evidence for a carboxyl-terminal heparinbinding domain. J. Lipid Res. 39, 633–646 (1998)
  • Lookene A, Zhang L, Tougu V, Olivecrona: 1,1´-bis(anilino)-4-,4´-bis(naphtalene)-8,8´- disulfonate acts as an inhibitor of lipoprotein lipase and competes for binding with apolipoprotein CII. J. Biol. Chem. 278, 37183–37194 (2003)
  • Cisar LA, Hoogewerf AJ, Cupp M, Rapport CA, Bensadoun A: Secretion and degradation of lipoprotein lipase in cultured adipocytes. Binding of lipoprotein lipase to membrane heparan sulfate proteoglycans is necessary for degradation. J. Biol. Chem. 264, 1767–1774 (1989)
  • Hoogewerf AJ, Cisar LA, Evans DC, Bensadoun A: Effect of chlorate on the sulfation of lipoprotein lipase and heparan sulfate proteoglycans. Sulfation of heparan sulfate proteoglycans affects lipoprotein lipase degradation. J. Biol. Chem. 266, 16564–16571 (1991)
  • Cisar LA, Melford KH, Sensel M, Bensadoun A: Heparin decreases the degradation rate of hepatic lipase in Fu5AH rat hepatoma cells. A model for hepatic lipase efflux from hepatocytes. Biochim. Biophys. Acta 1004, 196–204 (1989)
  • Olivecrona T, Bengtsson-Olivecrona G: Lipoprotein lipase and hepatic lipase. Curr. Opin Lipidol. 4, 187–196 (1993)
  • Chang S, Borensztajn J: Hepatic lipase function and the accumulation of -verylow- density lipoproteins in the plasma of cholesterol-fed rabbits. Biochem. J. 293, 745–750 (1993)
  • Hegele RA, Little JA, Vezina C et al.: Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler. Thromb. 13, 720–728 (1993)
  • Jaye M, Lynch KJ, Krawiec J et al.: A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21, 424–428 (1999)
  • Rader DJ, Jaye M: Endothelial lipase: a new member of the triglyceride lipase gene family. Curr. Opin Lipidol. 11, 141–147 (2000)
  • Homanics GE, de Silva HV, Osada J et al.: Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J. Biol. Chem. 270, 2974–2980 (1995)
  • Ishida T, Choi S, Kundu RK et al.: Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 111, 347–355 (2003)
  • Mead JR, Irvine SA, Ramji DP: Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med. 80, 753–769 (2002)
  • Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA: PPAR and PPAR activators direct a distinct tissuespecific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15, 5336–5348 (1996)
  • Zhang Y, Repa JJ, Gauthier K, Mangelsdorf DJ: Regulation of lipoprotein lipase by the oxysterol receptors, LXR and LXR . J. Biol. Chem. 276, 43018–43024 (2001)
  • Semenkovich CF, Wims M, Noe L, Etienne J, Chan L: Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels. J. Biol. Chem. 264, 9030–9038 (1989)
  • Bergo M, Wu G, Ruge T, Olivecrona T: Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on. J. Biol. Chem. 277, 11927–11932 (2002)
  • Bergo M, Olivecrona G, Olivecrona T: Forms of lipoprotein lipase in rat tissues: in adipose tissue the proportion of inactive lipase increases on fasting. Biochem. J. 313(Pt 3), 893–898 (1996)
  • Sukonina V, Lookene A, Olivecrona T, Olivecrona G: Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl Acad. Sci. USA 103, 17450–17455 (2006)
  • Ruge T, Bergo M, Hultin M, Olivecrona G, Olivecrona T: Nutritional regulation of binding sites for lipoprotein lipase in rat heart. Am. J. Physiol. Endocrinol. Metab. 278, E211–E218 (2000)
  • Kiens B, Lithell H, Mikines KJ, Richter EA: Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J. Clin. Invest. 84, 1124–1129 (1989)
  • Reina M, Brunzell JD, Deeb SS: Molecular basis of familial chylomicronemia: mutations in the lipoprotein lipase and apolipoprotein C-II genes. J. Lipid Res. 33, 1823–1832 (1992)
  • Stalenhoef AFH, Malloy MJ, Kane JP, Havel RJ: Metabolism of apolipoproteins B-48 and B-100 of triglyceride-rich lipoproteins in normal and lipoprotein lipase-deficient humans. Proc. Natl Acad. Sci. USA 81, 1839–1843 (1984)
  • Weinstock PH, Bisgaier CL, Aalto-Setälä K et al.: Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired low density lipoprotein clearance in heterozygotes. J. Clin. Invest. 96, 2555–2568 (1995)
  • Coleman T, Seip RL, Gimble JM, Lee D, Maeda N, Semenkovich CF: COOHterminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J. Biol. Chem. 270, 12518–12525 (1995)
  • Acton SL, Scherer PE, Lodish HF, Krieger M: Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J. Biol. Chem. 269, 21003–21009 (1994)
  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996)
  • Cardin AD, Jackson RL, Sparrow DA, Sparrow JT: Interaction of glycosaminoglycans with lipoproteins. Ann. NY Acad. Sci. 556, 186–193 (1989)
  • Brown MS, Goldstein JL: A receptormediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986)
  • Lugemwa FN, Esko JD: Estradiol -Dxyloside, an efficient primer for heparan sulfate biosynthesis. J. Biol. Chem. 266, 6674–6677 (1991)
  • Gi P, Beigneux AP, Davies B: Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution. Biochim. Biophys. Acta (2007) (In Press)
  • Cardin AD, Hirose N, Blankenship DT, Jackson RL, Harmony JAK: Binding of a high reactive heparin to human apolipoprotein E: identification of two heparin-binding domains. Biochem. Biophys. Res. Commun. 134, 783–789 (1986)
  • Cardin AD, Barnhart RL, Witt KR, Jackson RL: Reactivity of heparin with the human plasma heparin-binding proteins thrombin, antithrombin III, and apolipoproteins E and B-100. Thromb. Res. 34, 541–550 (1984)
  • Lookene A, Beckstead JA, Nilsson S, Olivecrona G, Ryan RO: Apolipoprotein AV-heparin interactions: implications for plasma lipoprotein metabolism. J. Biol. Chem. 280, 25383–25387 (2005)
  • Goldberg IJ, Wagner WD, Pang L et al.: The NH2-terminal region of apolipoprotein B is sufficient for lipoprotein association with glycosaminoglycans. J. Biol. Chem. 273, 35355–35361 (1998)
  • Flood C, Gustafsson M, Richardson PE, Harvey SC, Segrest JP, Borén J: Identification of the proteoglycan binding site in apolipoprotein B48. J. Biol. Chem. 277, 32228–32233 (2002)
  • Pennacchio LA, Olivier M, Hubacek JA et al.: An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294, 169–173 (2001)
  • Calandra S, Oliva CP, Tarugi P, Bertolini S: APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency. Curr. Opin. Lipidol. 17, 122–127 (2006)
  • Grosskopf I, Baroukh N, Lee SJ, Kamari Y: Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler. Thromb. Vasc. Biol. 25, 2573–2579 (2005)
  • Mahley RW: Expanding roles for apolipoprotein E in health and disease. In: Atherosclerosis XI. Jacotot B, Mathé D, Fruchart J-C (Eds). Elsevier Science, Amsterdam, The Netherlands 117–124 (1998)
  • Teng B, Davidson NO: Evolution of intestinal apolipoprotein B mRNA editing. Chicken apolipoprotein B mRNA is not edited, but chicken enterocytes contain in vitro editing enhancement factor(s). J. Biol. Chem. 267, 21265–21272 (1992)
  • Cunningham O, Andolfo A, Santovito ML, Iuzzolino L, Blasi F, Sidenius N: Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J. 22, 5994–6003 (2003)
  • Varma R, Mayor S: GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998)
  • Kingsley DM, Krieger M: Receptormediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc. Natl Acad. Sci. USA 81, 5454–5458 (1984).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.