205
Views
0
CrossRef citations to date
0
Altmetric
Review

Infection-Associated Genes of Candida Albicans

Pages 209-218 | Published online: 08 Aug 2006

Bibliography

  • Ruhnke M : Skin and mucous membrane infections. In:Candida and Candidiasis. Calderone RA (Ed.). ASM Press, Washington, DC, USA (2002).
  • Sobel JD : Treatment of vaginal Candida infections.Expert Opin. Pharmacother.3 , 1059–1065 (2002).
  • Kullberg BJ , Oude Lashof AM: Epidemiology of opportunistic invasive mycoses. Eur. J. Med. Res.7 , 183–191 (2002).
  • Mavor AL , Thewes S, Hube B: Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr. Drug Targets6 , 863–874 (2005).
  • Hube B : From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans.Curr. Opin. Microbiol.7 , 336–341 (2004).
  • Felk A , Kretschmar M, Albrecht A et al.: Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect. Immun.70 , 3689–3700 (2002).
  • Li D , Bernhardt J, Calderone R: Temporal expression of the Candida albicans genes CHK1 and CSSK1, adherence, and morphogenesis in a model of reconstituted human esophageal epithelial candidiasis. Infect. Immun.70 , 1558–1565 (2002).
  • Naglik JR , Newport G, White TC et al.: In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect. Immun.67 , 2482–2490 (1999).
  • Ripeau JS , Fiorillo M, Aumont F, Belhumeur P, de Repentigny L: Evidence for differential expression of Candida albicans virulence genes during oral infection in intact and human immunodeficiency virus type 1-transgenic mice. J. Infect. Dis.185 , 1094–1102 (2002).
  • Schaller M , Schafer W, Korting HC, Hube B: Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol. Microbiol.29 , 605–615 (1998).
  • Schofield DA , Westwater C, Warner T, Nicholas PJ, Paulling EE, Balish E: Hydrolytic gene expression during oroesophageal and gastric candidiasis in immunocompetent and immunodeficient gnotobiotic mice. J. Infect. Dis.188 , 591–599 (2003).
  • Green CB , Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL: RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150 , 267–275 (2004).
  • Staib P , Kretschmar M, Nichterlein T, Hof H, Morschhauser J: Differential activation of a Candida albicans virulence gene family during infection. Proc. Natl Acad. Sci. USA97 , 6102–6107 (2000).
  • Barelle CJ , Priest CL, MacCallum DM, Gow NAR, Odds FC, Brown AJP: Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol.8 , 961–971 (2006).
  • Fradin C , De Groot P, MacCallum D et al.: Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol.56 , 397–415 (2005).
  • Fradin C , Hube B: Tissue infection and site-specific gene expression in Candida albicans. Adv. Appl. Microbiol.53 , 271–290 (2003).
  • Lorenz MC , Bender JA, Fink GR: Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell3 , 1076–1087 (2004).
  • Rubin-Bejerano I , Fraser I, Grisafi P, Fink GR: Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl Acad. Sci. USA100 , 11007–11012 (2003).
  • Andes D , Lepak A, Pitula A, Marchillo K, Clark J: A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. J. Infect. Dis.192 , 893–900 (2005).
  • Prigneau O , Porta A, Poudrier JA, Colonna-Romano S, Noel T, Maresca B: Genes involved in β-oxidation, energy metabolism and glyoxylate cycle are induced by Candida albicans during macrophage infection. Yeast20 , 723–730 (2003).
  • Cheng S , Clancy CJ, Checkley MA et al.: Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol. Microbiol.48 , 1275–1288 (2003).
  • Filler SG , Swerdloff JN, Hobbs C, Luckett PM: Penetration and damage of endothelial cells by Candida albicans. Infect. Immun.63 , 976–983 (1995).
  • Fradin C , Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B: Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol.47 , 1523–1543 (2003).
  • Gow NA , Knox Y, Munro CA, Thompson WD: Infection of chick chorioallantoic membrane (CAM) as a model for invasive hyphal growth and pathogenesis of Candida albicans. Med. Mycol.41 , 331–338 (2003).
  • Kumamoto CA , Vinces MD: Contributions of hyphae and hypha-coregulated genes to Candida albicans virulence. Cell Microbiol.7 , 1546–1554 (2005).
  • Kumamoto CA , Vinces MD: Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol.59 , 113–133 (2005).
  • Ravishankar JP , Davis CM, Davis DJ et al.: Mechanics of solid tissue invasion by the mammalian pathogen Pythium insidiosum. Fungal Genet. Biol.34 , 167–175 (2001).
  • Sherwood J , Gow NA, Gooday GW, Gregory DW, Marshall D: Contact sensing in Candida albicans: a possible aid to epithelial penetration. J. Med. Vet. Mycol.30 , 461–469 (1992).
  • Phan QT , Fratti RA, Prasadarao NV, Edwards JE Jr, Filler SG: N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J. Biol. Chem.280 , 10455–10461 (2005).
  • Hube B , Naglik J: Extracellular hydrolases. In: Candida and Candidiasis. Calderone RA (Ed.). ASM Press, Washington, DC, USA, 107–122 (2002).
  • Schaible UE , Kaufmann SH:A nutritive view on the host–pathogen interplay. Trends Microbiol.13 , 373–380 (2005).
  • Lorenz MC , Fink GR: The glyoxylate cycle is required for fungal virulence. Nature412 , 83–86 (2001).
  • Biswas K , Morschhauser J: The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol. Microbiol.56 , 649–669 (2005).
  • Martinez P , Ljungdahl PO: Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol. Cell. Biol.25 , 9435–9446 (2005).
  • Naglik J , Albrecht A, Bader O, Hube B: Candida albicans proteinases and host/pathogen interactions. Cell Microbiol.6 , 915–926 (2004).
  • Naglik JR , Challacombe SJ, Hube B: Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev.67 , 400–428 (2003).
  • Martinez P , Ljungdahl PO: An ER packaging chaperone determines the amino acid uptake capacity and virulence of Candida albicans. Mol. Microbiol.51 , 371–384 (2004).
  • Weissman Z , Kornitzer D:A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol. Microbiol.53 , 1209–1220 (2004).
  • Ramanan N , Wang Y:A high-affinity iron permease essential for Candida albicans virulence. Science288 , 1062–1064 (2000).
  • Eck R , Hundt S, Hartl A, Roemer E, Kunkel W: A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology145(Pt 9) , 2415–2422 (1999).
  • Weissman Z , Shemer R, Kornitzer D: Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans.Mol. Microbiol.44 , 1551–1560 (2002).
  • Heymann P , GeradsM, SchallerM, Dromer F, Winkelmann G, Ernst JF: The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect. Immun.70(90) , 5246–5255 (2002).
  • Moors MA , Stull TL, Blank KJ, Buckley HR, Mosser DM: A role for complement receptor-like molecules in iron acquisition by Candida albicans.J. Exp. Med.175 , 1643–1651 (1992).
  • Santos R , Buisson N, Knight S, Dancis A, Camadro JM, Lesuisse E: Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology149 , 579–588 (2003).
  • Lan CY , Rodarte G, Murillo LA et al.: Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol.53 , 1451–1469 (2004).
  • Davis D : Adaptation to environmental pH in Candida albicans and its relation to pathogenesis.Curr. Genet.44 , 1–7 (2003).
  • Barwell KJ , Boysen JH, Xu W, Mitchell AP: Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans.Eukaryot. Cell4 , 890–899 (2005).
  • Bensen ES , Martin SJ, Li M, Berman J, Davis DA: Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol.54 , 1335–1351 (2004).
  • Brown AJP : Postgenomic approaches to analyse Candida albicans pathogenicity. In:Fungal Genomics and Proteomics. Brown AJP (Ed.). Springer verlag, Heidelberg, Germany, 163–184 (2006).
  • Jones T , Federspiel NA, Chibana H et al.: The diploid genome sequence of Candida albicans. Proc. Natl Acad. Sci. USA101 , 7329–7334 (2004).
  • Enjalbert B , Smith DA, Cornell MJ et al.: Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans.Mol. Biol. Cell17 , 1018–1032 (2006).
  • Klis FM , de Groot P, Hellingwerf K: Molecular organization of the cell wall of Candida albicans.Med. Mycol.39(Suppl. 1) , 1–8 (2001).
  • Hoyer LL : The ALS gene family of Candida albicans.Trends Microbiol.9 , 176–180 (2001).
  • Sundstrom P : Adhesion in Candida spp.Cell Microbiol.4 , 461–469 (2002).
  • Dongari-Bagtzoglou A , Fidel PL Jr: The host cytokine responses and protective immunity in oropharyngeal candidiasis. J. Dent. Res.84 , 966–977 (2005).
  • Fidel PL Jr: The protective immune response against vaginal candidiasis: lessons learned from clinical studies and animal models. Int. Rev. Immunol.21 , 515–548 (2002).
  • Hromatka BS , Noble SM, Johnson AD: Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol. Biol. Cell16 , 4814–4826 (2005).
  • Wysong DR , Christin L, Sugar AM, Robbins PW, Diamond RD: Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect. Immun.66 , 1953–1961 (1998).
  • Martchenko M , Alarco AM, Harcus D, Whiteway M: Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell15 , 456–467 (2004).
  • Gavin AC , Bosche M, Krause R et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415 , 141–147 (2002).
  • Swoboda RK , Bertram G, Hollander H et al.: Glycolytic enzymes of Candida albicans are nonubiquitous immunogens during candidiasis. Infect. Immun.61 , 4263–4271 (1993).
  • Green CB , Zhao X, Hoyer LL: Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect. Immun.73 , 1852–1855 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.