346
Views
0
CrossRef citations to date
0
Altmetric
Review

Use of Pharmacokinetic/Pharmacodynamic Biomarkers to Support Rational Cancer Drug Development

, &
Pages 399-417 | Published online: 05 Nov 2007

Bibliography

  • Workman P : Drugging the cancer kinome: progress and challenges in developing personalized molecular cancer therapeutics.Cold Spring Harb. Symp. Quant. Biol.70 , 499–515 (2005).
  • Hanahan D , WeinbergRA: The hallmarks of cancer.Cell100(1), 57–70 (2000).
  • Collins I , WorkmanP: New approaches to molecular cancer therapeutics.Nat. Chem. Biol.2(12), 689–700 (2006).
  • Workman P : Genomics and the second golden era of cancer drug development.Mol. Biosyst.1(1), 17–26 (2005).
  • Kelloff GJ , SigmanCC: New science-based endpoints to accelerate oncology drug development.Eur. J. Cancer41(4), 491–501 (2005).
  • Reichert JM : Trends in development and approval times for new therapeutics in the United States.Nat. Rev. Drug Discov.2(9), 695–702 (2003).
  • Kola I , LandisJ: Can the pharmaceutical industry reduce attrition rates?Nat. Rev. Drug Discov.3(8), 711–715 (2004).
  • Workman P : Challenges of PK/PD measurements in modern drug development.Eur. J. Cancer38(16), 2189–2193 (2002).
  • Workman P : How much gets there and what does it do? The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development.Curr. Pharm. Des.9(11), 891–902 (2003).
  • Biomarkers Definitions Working Group: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69 , 89–95 (2001).
  • Frank R , HargreavesR: Clinical biomarkers in drug discovery and development.Nat. Rev. Drug Discov.2(7), 566–580 (2003).
  • Ludwig JA , WeinsteinJN: Biomarkers in cancer staging, prognosis and treatment selection.Nat. Rev. Cancer5(11), 845–856 (2005).
  • Bubley GJ , CarducciM, DahutW et al.: Eligibility and response guidelines for Phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J. Clin. Oncol.17(11), 3461–3467 (1999).
  • Rustin GJ , BastRCJr, KelloffGJet al.: Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. Clin. Cancer Res.10(11), 3919–3926 (2004).
  • Slamon DJ , ClarkGM, WongSG, LevinWJ, UllrichA, McGuireWL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235(4785), 177–182 (1987).
  • Baselga J , AlbanellJ, RuizAet al.: Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J. Clin. Oncol.23(23), 5323–5333 (2005).
  • Clarke PA , HosteinI, BanerjiUet al.: Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the Hsp90 molecular chaperone. Oncogene19(36), 4125–4133 (2000).
  • Dowsett M , SmithIE, EbbsSRet al.: Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. Clin. Cancer Res.12(Suppl. 3 Pt 2) , S1024–S1030 (2006).
  • Workman P: Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Mol. Cancer Ther.2(2), 131–138 (2003).
  • Park JW , KerbelRS, KelloffGJet al.: Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. Clin. Cancer Res.10(11), 3885–3896 (2004).
  • Workman P: The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones. Cancer Chemother. Pharmacol.52(Suppl. 1) , S45–S56 (2003).
  • Sarker D , WorkmanP: Pharmacodynamic biomarkers for molecular cancer therapeutics.Adv. Cancer Res.96 , 213–268 (2007).
  • Clarke PA , te PoeleR, WorkmanP: Gene expression microarray technologies in the development of new therapeutic agents. Eur. J. Cancer40(17), 2560–2591 (2004).
  • Sears C , ArmstrongSA: Microarrays to identify new therapeutic strategies for cancer.Adv. Cancer Res.96 , 51–74 (2007).
  • Clarke PA , te PoeleR, WoosterR, WorkmanP: Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem. Pharmacol.62(10), 1311–1336 (2001).
  • Clarke PA , GeorgeML, EasdaleSet al.: Molecular pharmacology of cancer therapy in human colorectal cancer by gene expression profiling. Cancer Res.63(20), 6855–6863 (2003).
  • van de Vijver MJ , HeYD, van‘t VeerLJet al.: A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347(25), 1999–2009 (2002).
  • Petricoin EF , ArdekaniAM, HittBAet al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Check E : Proteomics and cancer: running before we can walk?Nature429(6991), 496–497 (2004).
  • Ransohoff DF : Lessons from controversy: ovarian cancer screening and serum proteomics.J. Natl Cancer Inst.97(4), 315–319 (2005).
  • Carr KM , RosenblattK, PetricoinEF, LiottaLA: Genomic and proteomic approaches for studying human cancer: prospects for true patient-tailored therapy. Hum. Genomics1(2), 134–140 (2004).
  • Chung CH , LevyS, ChaurandP, CarboneDP: Genomics and proteomics: emerging technologies in clinical cancer research. Crit. Rev. Oncol. Hematol.61(1), 1–25 (2007).
  • Panaretou B , SiligardiG, MeyerPet al.: Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone aha1. Mol.Cell10(6), 1307–1318 (2002).
  • Maloney A , ClarkePA, Naaby-HansenSet al.: Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res.67(7), 3239–3253 (2007).
  • Cristofanilli M , BuddGT, EllisMJet al.: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med.351(8), 781–791 (2004).
  • Hayes DF , CristofanilliM, BuddGTet al.: Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res.12(14 Pt 1) , 4218–4224 (2006).
  • Bertolini F , ShakedY, MancusoP, KerbelRS: The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer6(11), 835–845 (2006).
  • Eary JF , MankoffDA, SpenceAMet al.: 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res.59(3), 615–621 (1999).
  • Shields AF , GriersonJR, DohmenBMet al.: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med.4(11), 1334–1336 (1998).
  • Findlay M , YoungH, CunninghamDet al.: Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J. Clin. Oncol.14(3), 700–708 (1996).
  • Keen HG , DekkerBA, DisleyLet al.: Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl. Med. Biol.32(4), 395–402 (2005).
  • Galbraith SM , RustinGJ, LodgeMAet al.: Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J. Clin. Oncol.20(18), 3826–3840 (2002).
  • Stroobants S , GoeminneJ, SeegersMet al.: 18FDG-positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur. J. Cancer39(14), 2012–2020 (2003).
  • Demetri GD , vonMM, BlankeCDet al.: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med.347(7), 472–480 (2002).
  • Workman P , AboagyeEO, ChungYLet al.: Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J. Natl Cancer Inst.98(9), 580–598 (2006).
  • Pearson H : Meet the human metabolome.Nature446(7131), 8 (2007).
  • Wishart DS , TzurD, KnoxCet al.: HMDB: the Human Metabolome Database. Nucleic Acids Res.35(Database issue) , D521–D526 (2007).
  • Clayton TA , LindonJC, CloarecOet al.: Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature440(7087), 1073–1077 (2006).
  • Evans WE , RellingMV: Clinical pharmacokinetics–pharmacodynamics of anticancer drugs.Clin. Pharmacokinet.16(6), 327–336 (1989).
  • Raynaud FI , WhittakerSR, FischerPMet al.: In vitro and in vivo pharmacokinetics–pharmacodynamic relationships for the trisubstituted aminopurine cyclin-dependent kinase inhibitors olomoucine, bohemine and CYC202. Clin. Cancer Res.11(13), 4875–4887 (2005).
  • Benson C , WhiteJ, DeBJet al.: A Phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br. J. Cancer96(1), 29–37 (2007).
  • Meibohm B , DerendorfH: Pharmacokinetic/pharmacodynamic studies in drug product development.J. Pharm. Sci.91(1), 18–31 (2002).
  • Luo FR , YangZ, CamusoAet al.: Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin. Cancer Res.12(23), 7180–7186 (2006).
  • Luo FR , YangZ, DongHet al.: Prediction of active drug plasma concentrations achieved in cancer patients by pharmacodynamic biomarkers identified from the geo human colon carcinoma xenograft model. Clin. Cancer Res.11(15), 5558–5565 (2005).
  • Bader AG , KangS, ZhaoL, VogtPK: Oncogenic PI3K deregulates transcription and translation.Nat. Rev. Cancer5(12), 921–929 (2005).
  • Vivanco I , SawyersCL: The phosphatidylinositol 3-kinase AKT pathway in human cancer.Nat. Rev. Cancer2(7), 489–501 (2002).
  • Adjei AA , HidalgoM: Intracellular signal transduction pathway proteins as targets for cancer therapy.J. Clin. Oncol.23(23), 5386–5403 (2005).
  • Campbell IG , RussellSE, ChoongDYet al.: Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.64(21), 7678–7681 (2004).
  • Broderick DK , DiC, ParrettTJet al.: Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res.64(15), 5048–5050 (2004).
  • Samuels Y , WangZ, BardelliAet al.: High frequency of mutations of the PIK3CA gene in human cancers. Science304(5670), 554 (2004).
  • Kang S , BaderAG, VogtPK: Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic.Proc. Natl Acad. Sci. USA102(3), 802–807 (2005).
  • Schmelzle T , HallMN: TOR, a central controller of cell growth.Cell103(2), 253–262 (2000).
  • Cantley LC , NeelBG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway.Proc. Natl Acad. Sci. USA96(8), 4240–4245 (1999).
  • Cully M , YouH, LevineAJ, MakTW: Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis.Nat. Rev. Cancer6(3), 184–192 (2006).
  • Ringel MD , HayreN, SaitoJet al.: Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res.61(16), 6105–6111 (2001).
  • Sordella R , BellDW, HaberDA, SettlemanJ: Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science305(5687), 1163–1167 (2004).
  • Sun M , WangG, PacigaJEet al.: AKT1/PKBα kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am. J. Pathol.159(2), 431–437 (2001).
  • Hennessy BT , SmithDL, RamPT, LuY, MillsGB: Exploiting the PI3K/AKT pathway for cancer drug discovery.Nat. Rev. Drug Discov.4(12), 988–1004 (2005).
  • Workman P: Inhibiting the phosphoinositide 3-kinase pathway for cancer treatment. Biochem. Soc. Trans.32(Pt 2) , 393–396 (2004).
  • Faivre S , KroemerG, RaymondE: Current development of mTOR inhibitors as anticancer agents.Nat. Rev. Drug Discov.5(8), 671–688 (2006).
  • Huang S , BjornstiMA, HoughtonPJ: Rapamycins: mechanism of action and cellular resistance.Cancer Biol. Ther.2(3), 222–232 (2003).
  • Hudes G , CarducciM, TomczakPet al.: Temsirolimus, interferon α, or both for advanced renal-cell carcinoma. N. Engl. J. Med.356(22), 2271–2281 (2007).
  • Galanis E , BucknerJC, MaurerMJet al.: Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol.23(23), 5294–5304 (2005).
  • Chan S , ScheulenME, JohnstonSet al.: Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol.23(23), 5314–5322 (2005).
  • Hidalgo M : New target, new drug, old paradigm.J. Clin. Oncol.22(12), 2270–2272 (2004).
  • Sawyers CL : Will mTOR inhibitors make it as cancer drugs?Cancer Cell4(5), 343–348 (2003).
  • Dudkin L , DillingMB, CheshirePJet al.: Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin. Cancer Res.7(6), 1758–1764 (2001).
  • Peralba JM , DeGraffenriedL, FriedrichsWet al.: Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin. Cancer Res.9(8), 2887–2892 (2003).
  • Atkins MB , HidalgoM, StadlerWMet al.: Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22(5), 909–918 (2004).
  • Boulay A , Zumstein-MeckerS, StephanCet al.: Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res.64(1), 252–261 (2004).
  • O´Donnell A , FaivreS, JudsonIet al.: A Phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc. Am. Soc. Clin. Oncol.22 (Abstract 803) (2003).
  • Tabernero J , RojoF, BurrisHet al.: A Phase I study with tumor molecular pharmacodynamic (MPD) evaluation of dose and schedule of the oral mTOR-inhibitor everolimus (RAD001) in patients (pts) with advanced solid tumors. J. Clin. Oncol.23(16), S193 (2005).
  • O‘Reilly KE , RojoF, SheQBet al.: mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66(3), 1500–1508 (2006).
  • Fan QW , KnightZA, GoldenbergDDet al.: A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell9(5), 341–349 (2006).
  • Raynaud FI , EcclesS, ClarkePAet al.: Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res.67(12), 5840–5850 (2007).
  • Thomas GV , TranC, MellinghoffIKet al.: Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat. Med.12(1), 122–127 (2006).
  • Thompson JE , ThompsonCB: Putting the rap on Akt.J. Clin. Oncol.22(20), 4217–4226 (2004).
  • Mellinghoff IK , SawyersCL: TORward AKTually useful mouse models.Nat. Med.10(6), 579–580 (2004).
  • Hayakawa M , KaizawaH, MoritomoHet al.: Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110α inhibitors. Bioorg. Med. Chem.14(20), 6847–6858 (2006).
  • Hayakawa M , KaizawaH, KawaguchiKet al.: Synthesis and biological evaluation of imidazo[1,2-α]pyridine derivatives as novel PI3 kinase p110α inhibitors. Bioorg. Med. Chem.15(1), 403–412 (2007).
  • Workman P , ClarkePA, GuillardS, RaynaudFI: Drugging the PI3 kinome.Nat. Biotechnol.24(7), 794–796 (2006).
  • Workman P: Drugging the cancer kinome: successes, problems, and emerging solutions. In: ASCO Educational Book 2005. Parry MC (Ed.). American Society of Clinical Oncology, 950–960 (2005).
  • Knight ZA , GonzalezB, FeldmanMEet al.: A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell125(4), 733–747 (2006).
  • Beloueche-Babari M , JacksonLE, Al-SaffarNMet al.: Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol. Cancer Ther.5(1), 187–196 (2006).
  • Beloueche-Babari M , JacksonLE, Al-SaffarNM, WorkmanP, LeachMO, RonenSM: Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition. Cancer Res.65(8), 3356–3363 (2005).
  • Ihle NT , WilliamsR, ChowSet al.: Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther.3(7), 763–772 (2004).
  • Williams R , BakerAF, IhleNT, WinklerAR, KirkpatrickL, PowisG: The skin and hair as surrogate tissues for measuring the target effect of inhibitors of phosphoinositide-3-kinase signaling. Cancer Chemother. Pharmacol.58(4), 444–450 (2006).
  • Powers MV , WorkmanP: Targeting of multiple signaling pathways by heat shock protein 90 molecular chaperone inhibitors.Endocr. Relat. Cancer13(Suppl. 1) , S125–S135 (2006).
  • Whitesell L , LindquistSL: Hsp90 and the chaperoning of cancer.Nat. Rev. Cancer5(10), 761–772 (2005).
  • Maloney A , WorkmanP: Hsp90 as a new therapeutic target for cancer therapy: the story unfolds.Expert Opin. Biol. Ther.2(1), 3–24 (2002).
  • Workman P: Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett.206(2), 149–157 (2004).
  • Banerji U , O‘DonnellA, ScurrMet al.: Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol.23(18), 4152–4161 (2005).
  • Goetz MP , ToftD, ReidJet al.: Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol.23(6), 1078–1087 (2005).
  • Grem JL , MorrisonG, GuoXDet al.: Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol.23(9), 1885–1893 (2005).
  • Nowakowski GS , McCollumAK, AmesMMet al.: A Phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin. Cancer Res.12(20 Pt 1) , 6087–6093 (2006).
  • Ramanathan RK , TrumpDL, EisemanJLet al.: Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin. Cancer Res.11(9), 3385–3391 (2005).
  • Banerji U , WaltonM, RaynaudFet al.: Pharmacokinetic–pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin. Cancer Res.11(19 Pt 1) , 7023–7032 (2005).
  • Maloney A , ClarkePA, WorkmanP: Genes and proteins governing the cellular sensitivity to Hsp90 inhibitors: a mechanistic perspective.Curr.Cancer Drug Targets3(5), 331–341 (2003).
  • Maloney A , ClarkePA: Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxy geldanamycin.Cancer Res.67(7), 3239–3253 (2007).
  • Hostein I , RobertsonD, DiStefanoF, WorkmanP, ClarkePA: Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis.Cancer Res.61(10), 4003–4009 (2001).
  • Grbovic OM , BassoAD, SawaiAet al.: V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA103(1), 57–62 (2006).
  • da Rocha DS , FriedlosF, LightY, SpringerC, WorkmanP, MaraisR: Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res.65(23), 10686–10691 (2005).
  • Zhang H , ChungD, YangYCet al.: Identification of new biomarkers for clinical trials of Hsp90 inhibitors. Mol. Cancer Ther.5(5), 1256–1264 (2006).
  • Chung YL , TroyH, BanerjiUet al.: Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models. J. Natl Cancer Inst.95(21), 1624–1633 (2003).
  • Liu D , HutchinsonOC, OsmanS, PriceP, WorkmanP, AboagyeEO: Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin.Br. J. Cancer87(7), 783–789 (2002).
  • Weber WA : Chaperoning drug development with PET.J. Nucl. Med.47(5), 735–737 (2006).
  • Smith-Jones PM , SolitDB, AkhurstT, AfrozeF, RosenN, LarsonSM: Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors.Nat. Biotechnol.22(6), 701–706 (2004).
  • Smith-Jones PM , SolitD, AfrozeF, RosenN, LarsonSM: Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J. Nucl. Med.47(5), 793–796 (2006).
  • Parulekar WR , EisenhauerEA: Novel endpoints and design of early clinical trials.Ann. Oncol.13(Suppl. 4) , 139–143 (2002).
  • Parulekar WR , EisenhauerEA: Phase I trial design for solid tumor studies of targeted, non-cytotoxic agents: theory and practice.J. Natl Cancer Inst.96(13), 990–997 (2004).
  • Stiles T , GrantV, MawbeyN: British Association of Research Quality Assurance: Good Clinical Laboratory Practice (GCLP). (2005).
  • Miller KJ , BowsherRR, CelnikerAet al.: Workshop on bioanalytical methods validation for macromolecules: summary report. Pharm. Res.18(9), 1373–1383 (2001).
  • Swanson BN : Delivery of high-quality biomarker assays.Dis. Markers.18(2), 47–56 (2002).
  • Lee JW , WeinerRS, SailstadJMet al.: Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm. Res.22(4), 499–511 (2005).
  • Cummings J , WardTH, LacasseEet al.: Validation of pharmacodynamic assays to evaluate the clinical efficacy of an antisense compound (AEG 35156) targeted to the X-linked inhibitor of apoptosis protein XIAP. Br. J. Cancer92(3), 532–538 (2005).
  • Lee JW , FigeysD, VasilescuJ: Biomarker assay translation from discovery to clinical studies in cancer drug development: quantification of emerging protein biomarkers.Adv. Cancer Res.96 , 269–298 (2007).
  • Hardcastle A , BoxallK, RichardsJet al.: Solid-phase immunoassays in mechanism-based drug discovery: their application in the development of inhibitors of the molecular chaperone heat-shock protein 90. Assay Drug Dev. Technol.3(3), 273–285 (2005).
  • Gowan SM , HardcastleA, HallsworthAEet al.: Application of meso scale technology for the measurement of phosphoproteins in human tumor xenografts. Assay Drug Dev. Technol.5(3), 391–402 (2007).
  • Kelloff GJ , BastRCJr, CoffeyDSet al.: Biomarkers, surrogate end points, and the acceleration of drug development for cancer prevention and treatment: an update prologue. Clin. Cancer Res.10(11), 3881–3884 (2004).
  • Kummar S , KindersR, RubinsteinLet al.: Compressing drug development timelines in oncology using phase ’0‘ trials. Nat. Rev. Cancer7(2), 131–139 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.