56
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Changing paradigm in HDL metabolism and cellular effects

, &
Pages 17-27 | Published online: 18 Jan 2017

Bibliography

  • Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J III: Factors of risk in the development of coronary heart disease – six year follow-up experience. The Framingham Study. Ann. Intern. Med. 55, 33–50 (1961)
  • Brewer HB Jr: Increasing HDL cholesterol levels. N. Engl. J. Med. 350(15), 1491–1494 (2004)
  • Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N: HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell. Metab. 7(5), 365–375 (2008)
  • Hegele RA, Little JA, Vezina C et al.: Hepatic lipase deficiency: clinical, biochemical, and molecular genetic characteristics. Arterioscler. Thromb. 13(5), 720–728 (1993)
  • Berard AM, Foger B, Remaley A et al.: High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithincholesteryl acyltransferase Nat. Med. 3(7), 744–749 (1997)
  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271(5248), 518–520 (1996)
  • Trigatti BL, Krieger M, Rigotti A: Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23(10), 1732–1738 (2003)
  • Yan D, Navab M, Bruce C, Fogelman AM, Jiang XC: PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity J. Lipid Res. 45(10), 1852–1858 (2004)
  • Hirano K, Yamashita S, Sakai N et al.: Molecular defect and atherogenicity in cholesteryl ester transfer protein deficiency. Ann. NY Acad. Sci. 748, 599–602 (1995)
  • Boekholdt SM, Kuivenhoven JA, Wareham NJ et al.: Plasma levels of cholesteryl ester transfer protein and the risk of future coronary artery disease in apparently healthy men and women: the prospective EPIC (European Prospective Investigation into Cancer and nutrition) – Norfolk population study. Circulation 110(11), 1418–1423 (2004)
  • Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Buga GM, Fogelman AM: Peptide mimetics of apolipoproteins improve HDL function. J. Clin. Lipidol. 1(2), 142–147 (2007)
  • Shaw JA, Bobik A, Murphy A et al.: Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ. Res. 103(10), 1084–1091 (2008).
  • Differences in plaque phenotype and monocyte expression profiles after single HDL infusion in humans compared with placebo.
  • Navab M, Imes SS, Hama SY et al.: Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J. Clin. Invest. 88(6), 2039–2046 (1991)
  • Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AM: A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J. Lipid Res. 42(8), 1308–1317 (2001)
  • Navab M, Yu R, Gharavi N et al.: High-density lipoprotein: antioxidant and anti-inflammatory properties. Curr. Atheroscler. Rep. 9(3), 244–248 (2007)
  • Imaizumi K, Havel RJ, Fainaru M, Vigne JL: Origin and transport of the A-I and arginine-rich apolipoproteins in mesenteric lymph of rats. J. Lipid Res. 19(8), 1038–1046 (1978)
  • Brewer HB Jr, Fairwell T, LaRue A, Ronan R, Houser A, Bronzert TJ: The amino acid sequence of human APOA-I, an apolipoprotein isolated from high density lipoproteins. Biochem. Biophys. Res. Commun. 80(3), 623–630 (1978)
  • Wang N, Silver DL, Thiele C, Tall AR: ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J. Biol. Chem. 276(26), 23742–23747 (2001)
  • Timmins JM, Lee JY, Boudyguina E et al.: Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J. Clin. Invest. 115(5), 1333–1342 (2005)
  • Brunham LR, Kruit JK, Iqbal J et al.: Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest. 116(4), 1052–1062 (2006)
  • Denis M, Landry YD, Zha X: ATP-binding cassette A1-mediated lipidation of apolipoprotein A-I occurs at the plasma membrane and not in the endocytic compartments. J. Biol. Chem. 283(23), 16178–16186 (2008)
  • Jonas A: Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta 1529(1–3), 245–256 (2000)
  • Hovingh GK, de GrootE, van der Steeg W et al.: Inherited disorders of HDL metabolism and atherosclerosis. Curr. Opin. Lipidol. 16(2), 139–145 (2005)
  • Carlson LA, Philipson B: Fish-eye disease. A new familial condition with massive corneal opacities and dyslipoproteinaemia. Lancet 2(8149), 922–924 (1979)
  • Brousseau ME, Santamarina-Fojo S, Vaisman BL et al.: Overexpression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner. J. Lipid Res. 38(12), 2537–2547 (1997)
  • Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H: A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406(6792), 203–207 (2000)
  • Morehouse LA, Sugarman ED, Bourassa PA et al.: Inhibition of CETP activity by torcetrapib reduces susceptibility to diet-induced atherosclerosis in New Zealand White rabbits. J. Lipid Res. 48(6), 1263–1272 (2007)
  • Barter PJ, Caulfield M, Eriksson M et al.: Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357(21), 2109–2122 (2007)
  • Kastelein JJ, van Leuven SI, Burgess L et al.: Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356(16), 1620–1630 (2007).
  • Large clinical trial assessing the effect of adding torcetrapib to statins in patients with familial hypercholesterolemia. 30 Joy T, Hegele RA: Is raising HDL a futile strategy for atheroprotection? Nat. Rev. Drug Discov. 7(2), 143–155 (2008)
  • El Harchaoui K, van der Steeg WA, Stroes ES, Kastelein JJ: The role of CETP inhibition in dyslipidemia. Curr. Atheroscler. Rep. 9(2), 125–133 (2007)
  • Krishna R, Anderson MS, Bergman AJ et al.: Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled Phase I studies. Lancet 370(9603), 1907–1914 (2007)
  • Day JR, Albers JJ, Lofton-Day CE et al.: Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J. Biol. Chem. 269(12), 9388–9391 (1994)
  • Tu AY, Nishida HI, Nishida T: High density lipoprotein conversion mediated by human plasma phospholipid transfer protein. J. Biol. Chem. 268(31), 23098–23105 (1993)
  • Pussinen PJ, Jauhiainen M, Metso J et al.: Binding of phospholipid transfer protein (PLTP) to apolipoproteins A-I and A-II: location of a PLTP binding domain in the amino terminal region of apoA-I. J. Lipid Res. 39(1), 152–161 (1998)
  • Jiang XC, Bruce C, Mar J et al.: Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J. Clin. Invest. 103(6), 907–914 (1999)
  • Moerland M, Samyn H, van Gent T et al.: Acute elevation of plasma PLTP activity strongly increases pre-existing atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28(7), 1277–1282 (2008)
  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271(5248), 518–520 (1996)
  • Liadaki KN, Liu T, Xu S et al.: Binding of high density lipoprotein (HDL) and discoidal reconstituted HDL to the HDL receptor scavenger receptor class B type I. Effect of lipid association and APOA-I mutations on receptor binding. J. Biol. Chem. 275(28), 21262–21271 (2000)
  • Wang N, Arai T, Ji Y, Rinninger F, Tall AR: Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J. Biol. Chem. 273(49), 32920–32926 (1998)
  • Arai T, Wang N, Bezouevski M, Welch C, Tall AR: Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J. Biol. Chem. 274(4), 2366–2371 (1999)
  • Huszar D, Varban ML, Rinninger F et al.: Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler. Thromb. Vasc. Biol. 20(4), 1068–1073 (2000)
  • Ruel IL, Couture P, Gagne C et al.: Characterization of a novel mutation causing hepatic lipase deficiency among French Canadians. J. Lipid Res. 44(8), 1508–1514 (2003)
  • Lambert G, Amar MJ, Martin P et al.: Hepatic lipase deficiency decreases the selective uptake of HDL-cholesteryl esters in vivo. J. Lipid Res. 41(5), 667–672 (2000)
  • Rouhani N, Young E, Chatterjee C, Sparks DL: HDL composition regulates displacement of cell surface-bound hepatic lipase. Lipids 43(9), 793–804 (2008)
  • Ji ZS, Dichek HL, Miranda RD, Mahley RW: Heparan sulfate proteoglycans participate in hepatic lipase and apolipoprotein E-mediated binding and uptake of plasma lipoproteins, including high density lipoproteins. J. Biol. Chem. 272(50), 31285–31292 (1997)
  • Ishida T, Choi S, Kundu RK et al.: Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 111(3), 347–355 (2003)
  • Jaye M, Lynch KJ, Krawiec J et al.: A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21(4), 424–428 (1999)
  • Maugeais C, Tietge UJ, Broedl UC et al.: Dose-dependent acceleration of highdensity lipoprotein catabolism by endothelial lipase. Circulation 108(17), 2121–2126 (2003)
  • Badellino KO, Wolfe ML, Reilly MP, Rader DJ: Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med. 3(2), E22 (2006)
  • Badellino KO, Wolfe ML, Reilly MP, Rader DJ: Endothelial lipase is increased in vivo by inflammation in humans. Circulation 117(5), 678–685 (2008)
  • Ansell BJ, Watson KE, Fogelman AM, Navab M, Fonarow GC: High-density lipoprotein function: recent advances. J. Am. Coll. Cardiol. 46(10), 1792–1798 (2005)
  • Movva R, Rader DJ: Laboratory assessment of HDL heterogeneity and function. Clin. Chem. 54(5), 788–800 (2008).
  • Review with focus on HDL subfractions and function. 54 Levels JH, Bleijlevens B, Rezaee F, Aerts JM, Meijers JC: SELDI-TOF mass spectrometry of high-density lipoprotein. Proteome Sci. 5, 15 (2007)
  • Vaisar T, Pennathur S, Green PS et al.: Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117(3), 746–756 (2007)
  • deGoma EM, deGoma RL, Rader DJ: Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J. Am. Coll. Cardiol. 51(23), 2199–2211 (2008).
  • Review of methods for HDL measurements beyond HDL-C levels. 57 Reape TJ, Groot PH: Chemokines and atherosclerosis. Atherosclerosis 147(2), 213–225 (1999)
  • Mackness B, Hine D, Liu Y, Mastorikou M, Mackness M: Paraoxonase-1 inhibits oxidised LDLinduced MCP-1 production by endothelial cells. Biochem. Biophys. Res. Commun. 318(3), 680–683 (2004)
  • Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ: High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 15(11), 1987–1994 (1995)
  • Park SH, Park JH, Kang JS, Kang YH: Involvement of transcription factors in plasma HDL protection against TNF-α- induced vascular cell adhesion molecule-1 expression. Int. J. Biochem. Cell. Biol. 35(2), 168–182 (2003)
  • Davies MJ, Gordon JL, Gearing AJ et al.: The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 171(3), 223–229 (1993)
  • Lawrence MB, Springer TA: Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65(5), 859–873 (1991)
  • Springer TA: Adhesion receptors of the immune system. Nature 346(6283), 425–434 (1990)
  • Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL: Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Thromb. Vasc. Biol. 15(1), 2–10 (1995)
  • Krejcy K, Schwarzacher S, Ferber W, Plesch C, Cybulsky MI, Weidinger FF: Expression of VCAM-1 in rabbit iliac arteries is associated with vasodilator dysfunction of regenerated endothelium following balloon injury. Atherosclerosis 122(1), 59–67 (1996)
  • Li H, Cybulsky MI, Gimbrone MA Jr, Libby P: An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb. 13(2), 197–204 (1993)
  • Carlos TM, Schwartz BR, Kovach NL et al.: Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 76(5), 965–970 (1990)
  • Calabresi L, Franceschini G, Sirtori CR et al.: Inhibition of VCAM-1 expression in endothelial cells by reconstituted high density lipoproteins. Biochem. Biophys. Res. Commun. 238(1), 61–65 (1997)
  • Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ: High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 15(11), 1987–1994 (1995)
  • Nofer JR, Geigenmuller S, Gopfert C, Assmann G, Buddecke E, Schmidt A: High density lipoprotein-associated lysosphingolipids reduce E-selectin expression in human endothelial cells. Biochem. Biophys. Res. Commun. 310(1), 98–103 (2003)
  • Cockerill GW, Huehns TY, Weerasinghe A et al.: Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation. Circulation 103(1), 108–112 (2001)
  • Nicholls SJ, Lundman P, Harmer JA et al.: Consumption of saturated fat impairs the anti-inflammatory properties of highdensity lipoproteins and endothelial function. J. Am. Coll. Cardiol. 48(4), 715–720 (2006)
  • Nofer JR, van der Giet M, Tolle M et al.: HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 113(4), 569–581 (2004)
  • Kimura T, Tomura H, Mogi C et al.: Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J. Biol. Chem. 281(49), 37457–37467 (2006)
  • Yuhanna IS, Zhu Y, Cox BE et al.: High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 7(7), 853–857 (2001)
  • Ramet ME, Ramet M, Lu Q et al.: High-density lipoprotein increases the abundance of eNOS protein in human vascular endothelial cells by increasing its half-life. J. Am. Coll. Cardiol. 41(12), 2288–2297 (2003)
  • Berliner JA, Subbanagounder G, Leitinger N, Watson AD, Vora D: Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med. 11(3–4), 142–147 (2001)
  • Gargalovic PS, Imura M, Zhang B et al.: Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc. Natl. Acad. Sci. USA 103(34), 12741–12746 (2006)
  • Gharavi NM, Gargalovic PS, Chang I et al.: High-density lipoprotein modulates oxidized phospholipid signaling in human endothelial cells from proinflammatory to anti-inflammatory. Arterioscler. Thromb. Vasc. Biol. 27(6), 1346–1353 (2007)
  • Norata GD, Callegari E, Inoue H, Catapano AL: HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: effects on COX-2/PGI-synthase coupling. Arterioscler. Thromb. Vasc. Biol. 24(5), 871–877 (2004)
  • Ashby DT, Rye KA, Clay MA, Vadas MA, Gamble JR, Barter PJ: Factors influencing the ability of HDL to inhibit expression of vascular cell adhesion molecule-1 in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18(9), 1450–1455 (1998)
  • Calabresi L, Gomaraschi M, Franceschini G: Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler. Thromb. Vasc. Biol. 23(10), 1724–1731 (2003)
  • Mineo C, Yuhanna IS, Quon MJ, Shaul PW: High density lipoproteininduced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J. Biol. Chem. 278(11), 9142–9149 (2003)
  • Norata GD, Bjork H, Hamsten A, Catapano AL, Eriksson P: High-density lipoprotein subfraction 3 decreases ADAMTS-1 expression induced by lipopolysaccharide and tumor necrosis factor-α in human endothelial cells. Matrix Biol. 22(7), 557–560 (2004)
  • Tedgui A, Mallat Z: Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86(2), 515–581 (2006)
  • Murphy AJ, Woollard KJ, Hoang A et al.: High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28(11), 2071–2077 (2008)
  • Ardans JA, Economou AP, Martinson JM Jr, Zhou M, Wahl LM: Oxidized low-density and high-density lipoproteins regulate the production of matrix metalloproteinase-1 and -9 by activated monocytes. J. Leukoc. Biol. 71(6), 1012–1018 (2002)
  • Terasaka N, Wang N, Yvan-Charvet L, Tall AR: High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc. Natl. Acad. Sci. USA 104(38), 15093–15098 (2007).
  • Demonstrates that ABCG1 protects macrophages from apoptosis by promoting efflux of 7-ketocholesterol. 89 Thompson PA, Kitchens RL: Native high-density lipoprotein augments monocyte responses to lipopolysaccharide (LPS) by suppressing the inhibitory activity of LPS-binding protein. J. Immunol. 177(7), 4880–4887 (2006)
  • Hyka N, Dayer JM, Modoux C et al.: Apolipoprotein A-I inhibits the production of interleukin-1ß and tumor necrosis factor-α by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8), 2381–2389 (2001)
  • Scanu A, MolnarfiN, Brandt KJ, Gruaz L, Dayer JM, Burger D: Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J. Leukoc. Biol. 83(4), 921–927 (2008)
  • Cettour-Rose P, Nguyen TX, Serrander L et al.: T cell contact-mediated activation of respiratory burst in human polymorphonuclear leukocytes is inhibited by highdensity lipoproteins and involves CD18. J. Leukoc. Biol. 77(1), 52–58 (2005)
  • Curtiss LK, Plow EF: Interaction of plasma lipoproteins with human platelets. Blood 64(2), 365–374 (1984)
  • Koller E, Koller F, Doleschel W: Specific binding sites on human blood platelets for plasma lipoproteins. Hoppe Seylers Z Physiol. Chem. 363(4), 395–405 (1982)
  • Ozsavci D, Yardimci T, Demirel GY, Uras F, Hekim N, Ulutin ON: Apo A-I binding to platelets detected by flow cytometry. Thromb. Res. 103(2), 117–122 (2001)
  • M, Brook JG: Platelet interaction with high and low density lipoproteins. Atherosclerosis 46(3), 259–268 (1983)
  • Aviram M, Brook JG: Characterization of the effect of plasma lipoproteins on platelet function in vitro. Haemostasis 13(6), 344–350 (1983)
  • Hassall DG, Owen JS, Bruckdorfer KR: The aggregation of isolated human platelets in the presence of lipoproteins and prostacyclin. Biochem. J. 216(1), 43–49 (1983)
  • Nofer JR, Walter M, Kehrel B et al.: HDL3-mediated inhibition of thrombin-induced platelet aggregation and fibrinogen binding occurs via decreased production of phosphoinositidederived second messengers 1,2-diacylglycerol and inositol 1,4,5- trisphosphate. Arterioscler. Thromb. Vasc. Biol. 18(6), 861–869 (1998)
  • Barlage S, Boettcher D, Boettcher A, Dada A, Schmitz G: High density lipoprotein modulates platelet function. Cytometry A 69(3), 196–199 (2006).
  • Recent paper about HDL–platelet interactions. 101 Assinger A, Schmid W, Eder S, Schmid D, Koller E, Volf I: Oxidation by hypochlorite converts protective HDL into a potent platelet agonist. FEBS Lett. 582(5), 778–784 (2008)
  • Naqvi TZ, Shah PK, Ivey PA et al.: Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation. Am. J. Cardiol. 84(9), 1011–1017 (1999)
  • deGoma EM, deGoma RL, Rader DJ: Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J. Am. Coll. Cardiol. 51(23), 2199–2211 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.