92
Views
0
CrossRef citations to date
0
Altmetric
Review

The Aging Immune System and Its Relationship with Cancer

, &
Pages 707-718 | Published online: 12 Oct 2011

Bibliography

  • Fulop T , KotbR, FortinCF, PawelecG, De Angelis F, Larbi A. Potential role of immunosenescence in cancer development. Ann. NY Acad. Sci.1197, 158–165(2010).
  • Hakim FT , FlomerfeltFA, BoyiadzisM, GressRE. Aging, immunity and cancer. Curr. Opin. Immunol.16(2), 151–156(2004).
  • Hakim FT , GressRE. Immunosenescence: deficits in adaptive immunity in the elderly. Tissue Antigens70(3), 179–189(2007).
  • Sportès C , HakimFT. Aging, immunity and cancer. In: Handbook on Immunosenescence: Basic Understanding and Clinical Applications. Fulop T, Franceschi C, Hirokawa K, Pawelec G (Eds). Springer, Berlin, Germany (2009).
  • Schultzel M , SaltzsteinSL, DownsTM, ShimasakiS, SandersC, SadlerGR. Late age (85 years or older) peak incidence of bladder cancer. J. Urol.179(4), 1302–1305; discussion 1305–1306 (2008).
  • Candore G , BalistreriCR, ListiFet al. Immunogenetics, gender, and longevity. Ann. NY Acad. Sci. 1089, 516–537(2006).
  • Derhovanessian E , MaierAB, BeckRet al. Hallmark features of immunosenescence are absent in familial longevity. J. Immunol. 185(8), 4618–4624(2010).
  • Arranz L , CaamanoJH, LordJM, De la Fuente M. Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: possible role of nuclear factor κB. J. Gerontol. A Biol. Sci. Med. Sci.65(9), 941–950(2010).
  • Arranz L , LordJM, De la Fuente M. Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice. Age (Dordr.)32(4), 451–466(2010).
  • Schreiber TH , PodackER. A critical analysis of the tumour immunosurveillance controversy for 3-MCA-induced sarcomas. Br. J. Cancer101(3), 381–386(2009).
  • Bedel R , Thiery-VuilleminA, GrandclementCet al. Novel role for STAT3 in transcriptional regulation of NK immune cell targeting receptor MICA on cancer cells. Cancer Res. 71(5), 1615–1626(2011).
  • Ridge JP , Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393(6684), 474–478(1998).
  • Bourgeois C , RochaB, TanchotC. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science297(5589), 2060–2063(2002).
  • Matsui S , AhlersJD, VortmeyerAOet al. A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J. Immunol. 163(1), 184–193(1999).
  • Gerner MY , CaseyKA, MescherMF. Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses. J. Immunol.181(1), 155–164(2008).
  • Corthay A , SkovsethDK, LundinKUet al. Primary antitumor immune response mediated by CD4+ T cells. Immunity 22(3), 371–383(2005).
  • Corthay A , LundinKU, LorvikKB, HofgaardPO, BogenB. Secretion of tumor-specific antigen by myeloma cells is required for cancer immunosurveillance by CD4+ T cells. Cancer Res.69(14), 5901–5907(2009).
  • Levitsky HI , LazenbyA, HayashiRJ, PardollDM. In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J. Exp. Med.179(4), 1215–1224(1994).
  • Bogen B , MuntheL, SollienAet al. Naive CD4+ T cells confer idiotype-specific tumor resistance in the absence of antibodies. Eur. J. Immunol. 25(11), 3079–3086(1995).
  • Haabeth OA , LorvikKB, HammarstromCet al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat. Comm. 2, 240 (2011).
  • Nakamura H , SajiH, OgataAet al. Immunologic parameters as significant prognostic factors in lung cancer. Lung Cancer 37(2), 161–169(2002).
  • Unitt E , MarshallA, GelsonWet al. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J. Hepatol. 45(2), 246–253(2006).
  • Vella LA , YuM, FuhrmannSR, El-AmineM, EppersonDE, FinnOJ. Healthy individuals have T-cell and antibody responses to the tumor antigen cyclin B1 that when elicited in mice protect from cancer. Proc. Natl Acad. Sci. USA106(33), 14010–14015(2009).
  • Koebel CM , VermiW, SwannJBet al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450(7171), 903–907(2007).
  • Engel AM , SvaneIM, RygaardJ, WerdelinO. MCA sarcomas induced in SCID mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice. Scand. J. Immunol.45(5), 463–470(1997).
  • Shankaran V , IkedaH, BruceATet al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832), 1107–1111(2001).
  • Haynes BF , MarkertML, SempowskiGD, PatelDD, HaleLP. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Ann. Rev. Immunol.18, 529–560(2000).
  • Seddon B , TomlinsonP, ZamoyskaR. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol.4(7), 680–686(2003).
  • Surh CD , BoymanO, PurtonJF, SprentJ. Homeostasis of memory T cells. Immunol. Rev.211, 154–163(2006).
  • Ivory K , MartinR, HughesDA. Significant presence of terminally differentiated T cells and altered NF-κB and I-κBα interactions in healthy ageing. Exp. Gerontol.39(4), 567–576(2004).
  • Ouyang Q , WagnerWM, WikbyAet al. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J. Clin. Immunol. 23(4), 247–257(2003).
  • Arnold CR , WolfJ, BrunnerS, Herndler-BrandstetterD, Grubeck-LoebensteinB. Gain and loss of T cell subsets in old age – age-related reshaping of the T cell repertoire. J. Clin. Immunol.31(2), 137–146(2011).
  • Sempowski GD , GoodingME, LiaoHX, LePT, HaynesBF. T cell receptor excision circle assessment of thymopoiesis in aging mice. Mol. Immunol.38(11), 841–848(2001).
  • Kilpatrick RD , RickabaughT, HultinLEet al. Homeostasis of the naive CD4+ T cell compartment during aging. J. Immunol. 180(3), 1499–1507(2008).
  • Globerson A , EffrosRB. Ageing of lymphocytes and lymphocytes in the aged. Immunol. Today21(10), 515–521(2000).
  • Bouree P . Immunity and immunization in elderly. Pathol. Biol. (Paris)51(10), 581–585(2003).
  • Kang I , HongMS, NolascoHet al. Age-associated change in the frequency of memory CD4+ T cells impairs long term CD4+ T cell responses to influenza vaccine. J. Immunol. 173(1), 673–681(2004).
  • Eaton SM , BurnsEM, KusserK, RandallTD, HaynesL. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J. Exp. Med.200(12), 1613–1622(2004).
  • Haynes L , LintonPJ, EatonSM, TonkonogySL, SwainSL. Interleukin 2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J. Exp. Med.190(7), 1013–1024(1999).
  • Eaton SM , MaueAC, SwainSL, HaynesL. Bone marrow precursor cells from aged mice generate CD4 T cells that function well in primary and memory responses. J. Immunol.181(7), 4825–4831(2008).
  • Yehuda AB , FriedmanG, WirtheimE, AbelL, GlobersonA. Checkpoints in thymocytopoiesis in aging: expression of the recombination activating genes RAG-1 and RAG-2. Mech. Ageing Dev.102(2–3), 239–247(1998).
  • Tsukamoto H , Clise-DwyerK, HustonGEet al. Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc. Natl Acad. Sci. USA 106(43), 18333–18338(2009).
  • Jones SC , Clise-DwyerK, HustonGet al. Impact of post-thymic cellular longevity on the development of age-associated CD4+ T cell defects. J. Immunol. 180(7), 4465–4475(2008).
  • Tsukamoto H , HustonGE, DibbleJ, DusoDK, SwainSL. Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. J. Immunol.185(8), 4535–4544(2010).
  • Gui J , ZhuX, DohkanJ, ChengL, BarnesPF, SuDM. The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int. Immunol.19(10), 1201–1211(2007).
  • Zhu X , GuiJ, DohkanJ, ChengL, BarnesPF, SuDM. Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell6(5), 663–672(2007).
  • Sun L , GuoJ, BrownR, AmagaiT, ZhaoY, SuDM. Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution. Aging Cell9(3), 347–357(2010).
  • Sauce D , LarsenM, FastenackelsSet al. Evidence of premature immune aging in patients thymectomized during early childhood. J. Clin. Invest. 119(10), 3070–3078(2009).
  • Madhok AB , ChandrasekranA, ParnellV, GandhiM, ChowdhuryD, PahwaS. Levels of recent thymic emigrant cells decrease in children undergoing partial thymectomy during cardiac surgery. Clin. Diagn. Lab. Immunol.12(5), 563–565(2005).
  • Ogle BM , WestLJ, DriscollDJet al. Effacing of the T cell compartment by cardiac transplantation in infancy. J. Immunol. 176(3), 1962–1967(2006).
  • Ahmed M , LanzerKG, YagerEJ, AdamsPS, JohnsonLL, BlackmanMA. Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J. Immunol.182(2), 784–792(2009).
  • Czesnikiewicz-Guzik M , LeeWW, CuiDet al. T cell subset-specific susceptibility to aging. Clin. Immunol. 127(1), 107–118(2008).
  • Gupta S , GollapudiS. TNF-α-induced apoptosis in human naive and memory CD8+ T cells in aged humans. Exp. Gerontol.41(1), 69–77(2006).
  • Gupta S , GollapudiS. CD95-mediated apoptosis in naive, central and effector memory subsets of CD4+ and CD8+ T cells in aged humans. Exp. Gerontol.43(4), 266–274(2008).
  • Smithey MJ , RenkemaKR, RuddBD, Nikolich-ZugichJ. Increased apoptosis, curtailed expansion and incomplete differentiation of CD8+ T cells combine to decrease clearance of L. monocytogenes in old mice. Eur. J. Immunol.41(5), 1352–1364(2011).
  • Cicin-Sain L , Smyk-PearsonS, CurrierNet al. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J. Immunol. 184(12), 6739–6745(2010).
  • Linton PJ , LiSP, ZhangY, BautistaB, HuynhQ, TrinhT. Intrinsic versus environmental influences on T-cell responses in aging. Immunol. Rev.205, 207–219(2005).
  • Cusi MG , MartorelliB, Di Genova G, Terrosi C, Campoccia G, Correale P. Age related changes in T cell mediated immune response and effector memory to respiratory syncytial virus (RSV) in healthy subjects. Immun. Ageing7, 14 (2010).
  • Watanabe MA , OdaJM, AmaranteMK, Cesar Voltarelli J. Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis Rev.29(4), 569–579(2010).
  • Hirokawa K , UtsuyamaM, IshikawaTet al. Decline of T cell-related immune functions in cancer patients and an attempt to restore them through infusion of activated autologous T cells. Mech. Ageing Dev. 130(1–2), 86–91(2009).
  • Rottinghaus EK , VesoskyB, TurnerJ. Interleukin-12 is sufficient to promote antigen-independent interferon-γ production by CD8 T cells in old mice. Immunology128(Suppl. 1), e679–e690 (2009).
  • Ouyang X , YangZ, ZhangRet al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis. Cell Immunol. 266(2), 208–217(2011).
  • Wang L , YiT, ZhangW, PardollDM, YuH. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res.70(24), 10112–10120(2010).
  • Iida T , IwahashiM, KatsudaMet al. Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol. Rep. 25(5), 1271–1277(2011).
  • Wilke CM , KryczekI, WeiSet al. Th17 cells in cancer: help or hindrance? Carcinogenesis 32(5), 643–649(2011).
  • Ahmad A , BanerjeeS, WangZ, KongD, MajumdarAP, SarkarFH. Aging and inflammation: etiological culprits of cancer. Curr. Aging Sci.2(3), 174–186(2009).
  • Haynes L , MaueAC. Effects of aging on T cell function. Curr. Opin. Immunol.21(4), 414–417(2009).
  • Maue AC , YagerEJ, SwainSL, WoodlandDL, BlackmanMA, HaynesL. T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol.30(7), 301–305(2009).
  • Yager EJ , AhmedM, LanzerK, RandallTD, WoodlandDL, BlackmanMA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med.205(3), 711–723(2008).
  • Parish ST , WuJE, EffrosRB. Sustained CD28 expression delays multiple features of replicative senescence in human CD8 T lymphocytes. J. Clin. Immunol.30(6), 798–805(2010).
  • Effros RB . Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp. Gerontol.46(2–3), 135–140(2010).
  • Cortesini R , LemaoultJ, CiubotariuR, CortesiniNS. CD8+CD28- T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity. Immunol. Rev.182, 201–206(2001).
  • Parish ST , KimS, SekhonRK, WuJE, KawakatsuY, EffrosRB. Adenosine deaminase modulation of telomerase activity and replicative senescence in human CD8 T lymphocytes. J. Immunol.184(6), 2847–2854(2010).
  • Mackenzie WM , HoskinDW, BlayJ. Adenosine suppresses α(4)β(7) integrin-mediated adhesion of T lymphocytes to colon adenocarcinoma cells. Exp. Cell Res.276(1), 90–100(2002).
  • Plunkett FJ , FranzeseO, FinneyHMet al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J. Immunol. 178(12), 7710–7719(2007).
  • Meloni F , MorosiniM, SolariNet al. Foxp3 expressing CD4+ CD25+ and CD8+CD28- T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum. Immunol. 67(1–2), 1–12(2006).
  • Tsukishiro T , DonnenbergAD, WhitesideTL. Rapid turnover of the CD8+CD28- T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol. Immunother.52(10), 599–607(2003).
  • Chang WC , LiCH, HuangSC, ChangDY, ChouLY, SheuBC. Clinical significance of regulatory T cells and CD8+ effector populations in patients with human endometrial carcinoma. Cancer116(24), 5777–5788(2010).
  • Urbaniak-Kujda D , Kapelko-SlowikK, WolowiecDet al. Increased percentage of CD8+CD28- suppressor lymphocytes in peripheral blood and skin infiltrates correlates with advanced disease in patients with cutaneous T-cell lymphomas. Postepy. Hig. Med. Dosw. (Online) 63, 355–359(2009).
  • Kruger K , BuningC, SchrieverF. Activated T lymphocytes bind in situ to stromal tissue of colon carcinoma but lack adhesion to tumor cells. Eur. J. Immunol.31(1), 138–145(2001).
  • Becker JC , VetterCS, SchramaD, BröckerEB, thor Straten P. Differential expression of CD28 and CD94/NKG2 on T cells with identical TCR β variable regions in primary melanoma and sentinel lymph node. Eur. J. Immunol.30(12), 3699–3706(2000).
  • Characiejus D , PasukonieneV, KazlauskaiteNet al. Predictive value of CD8highCD57+ lymphocyte subset in interferon therapy of patients with renal cell carcinoma. Anticancer Res. 22(6B), 3679–3683(2002).
  • Characiejus D , PasukonieneV, JacobsJJet al. Prognostic significance of peripheral blood CD8highCD57+ lymphocytes in bladder carcinoma patients after intravesical IL-2. Anticancer Res. 31(2), 699–703(2011).
  • Malaguarnera L , CristaldiE, MalaguarneraM. The role of immunity in elderly cancer. Crit. Rev. Oncol. Hematol.74(1), 40–60(2010).
  • Diak P , SiegelJ, La Grenade L, Choi L, Lemery S, McMahon A. Tumor necrosis factor α blockers and malignancy in children: forty-eight cases reported to the food and drug administration. Arthritis Rheum.62(8), 2517–2524(2010).
  • Zidi I , MestiriS, BartegiA, AmorNB. TNF-α and its inhibitors in cancer. Med. Oncol.27(2), 185–198(2009).
  • Begley LA , KasinaS, MacDonaldJ, MacoskaJA. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine43(2), 194–199(2008).
  • Barron DA , StrandDW, ResslerSJet al. TGF-β1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse. PLoS One 5(10), e13751 (2010).
  • Bianchi-Frias D , Vakar-LopezF, ColemanIM, PlymateSR, ReedMJ, NelsonPS. The effects of aging on the molecular and cellular composition of the prostate microenvironment. PLoS One5(9), e12501 (2010).
  • McDowell KL , BegleyLA, Mor-VakninN, MarkovitzDM, MacoskaJA. Leukocytic promotion of prostate cellular proliferation. Prostate70(4), 377–389(2010).
  • Anderson MJ , Shafer-WeaverK, GreenbergNM, HurwitzAA. Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J. Immunol.178(3), 1268–1276(2007).
  • Szajnik M , CzystowskaM, SzczepanskiMJ, MandapathilM, WhitesideTL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (T). PLoS One5(7), e11469 (2010).
  • Fry TJ , SinhaM, MillironMet al. Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood 104(9), 2794–2800(2004).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.