55
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Stem Cell Transplantation for Neurodegenerative Disease: A Distant Dream?

, &
Pages 139-148 | Published online: 04 Apr 2013

References

  • Evans MJ , KaufmanMH. Establishment in culture of pluripotential cells from mouse embryos. Nature292(5819), 154–156(1981).
  • Amit M , CarpenterMK, InokumaMSet al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227(2), 271–278(2000).
  • Wilmut I , SchniekeAE, McWhirJ, KindAJ, CampbellKH. Viable offspring derived from fetal and adult mammalian cells. Nature385(6619), 810–813(1997).
  • Yu J , ThomsonJA. Pluripotent stem cell lines. Genes Dev.22(15), 1987–1997(2008).
  • Takahashi K , YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676(2006).
  • Meissner A , WernigM, JaenischR. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol.25(10), 1177–1181(2007).
  • Okita K , IchisakaT, YamanakaS. Generation of germline-competent induced pluripotent stem cells. Nature448(7151), 313–317(2007).
  • Wernig M , MeissnerA, ForemanRet al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151), 318–324(2007).
  • Wernig M , ZhaoJP, PruszakJet al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson‘s disease. Proc. Natl Acad. Sci. USA 105(15), 5856–5861(2008).
  • Yu J , VodyanikMA, Smuga-OttoKet al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858), 1917–1920(2007).
  • Pang ZP , YangN, VierbuchenTet al. Induction of human neuronal cells by defined transcription factors. Nature 476(7359), 220–223(2011).
  • Pfisterer U , KirkebyA, TorperOet al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl Acad. Sci. USA 108(25), 10343–10348(2011).
  • Vierbuchen T , OstermeierA, PangZP, KokubuY, SudhofTC, WernigM. Direct conversion of fibroblasts to functional neurons by defined factors. Nature463(7284), 1035–1041(2010).
  • Han DW , TapiaN, HermannAet al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4), 465–472(2012).
  • Lujan E , ChandaS, AhleniusH, SudhofTC, WernigM. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc. Natl Acad. Sci. USA109(7), 2527–2532(2012).
  • Thier M , WorsdorferP, LakesYBet al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4), 473–479(2012).
  • Kelly CM , DunnettSB, RosserAE. Medium spiny neurons for transplantation in Huntington‘s disease. Biochem. Soc. Trans.37(Pt 1), 323–328(2009).
  • Bowen JD , KraftGH, WundesAet al. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant. 47(7), 946–951(2012).
  • Meng L , OuyangJ, ZhangH, WenY, ChenJ, ZhouJ. Treatment of an autoimmune encephalomyelitis mouse model with nonmyeloablative conditioning and syngeneic bone marrow transplantation. Restor. Neurol. Neurosci.29(3), 177–185(2011).
  • Muraro PA , AbrahamssonSV. Resetting autoimmunity in the nervous system: the role of hematopoietic stem cell transplantation. Curr. Opin. Investig. Drugs11(11), 1265–1275(2010).
  • Zuccato C , LiberD, RamosCet al. Progressive loss of BDNF in a mouse model of Huntington‘s disease and rescue by BDNF delivery. Pharmacol. Res. 52(2), 133–139(2005).
  • Olson SD , PollockK, KambalAet al. Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington‘s disease. Mol. Neurobiol. 45(1), 87–98(2012).
  • Tamaki SJ , JacobsY, DohseMet al. Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 5(3), 310–319(2009).
  • Mazzini L , FagioliF, BoccalettiRet al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4(3), 158–161(2003).
  • Mazzini L , FerreroI, LuparelloVet al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol. 223(1), 229–237(2010).
  • Savitz SI , DinsmoreJH, WechslerLR, RosenbaumDM, CaplanLR. Cell therapy for stroke. NeuroRx1(4), 406–414(2004).
  • Orive G , HernandezRM, MuruaA, PedrazJL. Recent advances in the use of encapsulated cells for effective delivery of therapeutics. Ther. Deliv.1(3), 387–396(2010).
  • Zurn AD , HenryH, SchluepMet al. Evaluation of an intrathecal immune response in amyotrophic lateral sclerosis patients implanted with encapsulated genetically engineered xenogeneic cells. Cell. Transplantation 9(4), 471–484(2000).
  • Bloch J , Bachoud-LeviAC, DeglonNet al. Neuroprotective gene therapy for Huntington‘s Disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a Phase I study. Hum. Gene Ther. 15(10), 968–975(2004).
  • Klinge PM , HarmeningK, MillerMCet al. Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer‘s disease. Neurosci. Lett. 497(1), 6–10(2011).
  • Knippenberg S , ThauN, DenglerR, BrinkerT, PetriS. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS One7(6), e36857 (2012).
  • Heile AM , WallrappC, KlingePMet al. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci. Lett. 463(3), 176–181(2009).
  • Gupta N , HenryRG, StroberJet al. Neural stem cell engraftment and myelination in the human brain. Sci. Transl Med. 4(155), 155ra137 (2012).
  • Uchida N , ChenK, DohseMet al. Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci. Transl Med. 4(155), 155ra136 (2012).
  • Olanow CW , KollerW, GoetzCGet al. Autologous transplantation of adrenal medulla in Parkinson‘s disease. 18-month results. Arch. Neurol. 47(12), 1286–1289(1990).
  • Watts RL , SubramanianT, FreemanAet al. Effect of stereotaxic intrastriatal cografts of autologous adrenal medulla and peripheral nerve in Parkinson‘s disease: two-year follow-up study. Exp. Neurol. 147(2), 510–517(1997).
  • Bye CR , ThompsonLH, ParishCL. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. Exp. Neurol.236(1), 58–68(2012).
  • Olanow CW , GoetzCG, KordowerJHet al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson‘s disease. Ann. Neurol. 54(3), 403–414(2003).
  • Freed CR , GreenePE, BreezeREet al. Transplantation of embryonic dopamine neurons for severe Parkinson‘s disease. N. Engl. J. Med. 344(10), 710–719(2001).
  • Kuan WL , ZhaoJW, BarkerRA. The role of anxiety in the development of levodopa-induced dyskinesias in an animal model of Parkinson‘s disease, and the effect of chronic treatment with the selective serotonin reuptake inhibitor citalopram. Psychopharmacology197(2), 279–293(2008).
  • Lee S -H, Lumelsky N, Studer L, Auerbach JM, Mckay R. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.18, 675–679(2000).
  • Bjorklund LM , Sânchez-PernauteR, ChungSet al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA 99(4), 2344–2349(2002).
  • Kawasaki H , MizusekiK, NishikawaSet al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1), 31–40(2000).
  • Kim JH , AuerbachJM, Rodriguez-GomezJAet al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson‘s disease. Nature 418(6893), 50–56(2002).
  • Roy NS , ClerenC, SinghSK, YangL, BealMF, GoldmanSA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med.12(11), 1259–1268(2006).
  • Ferri AL , LinW, MavromatakisYEet al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development134(15), 2761–2769(2007).
  • Kittappa R , ChangWW, AwatramaniRB, McKayRD. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol.5(12), e325 (2007).
  • Nunes I , TovmasianLT, SilvaRM, BurkeRE, GoffSP. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc. Natl Acad. Sci. USA100(7), 4245–4250(2003).
  • Kriks S , ShimJW, PiaoJet al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson‘s disease. Nature 480(7378), 547–551(2011).
  • Aubry L , BugiA, LefortN, RousseauF, PeschanskiM, PerrierAL. Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc. Natl Acad. Sci. USA105(43), 16707–16712(2008).
  • El-Akabawy G , MedinaLM, JeffriesA, PriceJ, ModoM. Purmorphamine increases DARPP-32 differentiation in human striatal neural stem cells through the hedgehog pathway. Stem Cells Dev.20(11), 1873–1887(2011).
  • Ma L , HuB, LiuYet al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10(4), 455–464(2012).
  • Brederlau A , CorreiaAS, AnisimovSVet al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson‘s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24(6), 1433–1440(2006).
  • Schuldiner M , Itskovitz-EldorJ, BenvenistyN. Selective ablation of human embryonic stem cells expressing a ‘suicide’ gene. Stem Cells21(3), 257–265(2003).
  • Choo AB , TanHL, AngSNet al. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26(6), 1454–1463(2008).
  • Tan HL , FongWJ, LeeEH, YapM, ChooA. mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells27(8), 1792–1801(2009).
  • Fong CY , PehGS, GauthamanK, BongsoA. Separation of SSEA-4 and TRA-1–60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev.5(1), 72–80(2009).
  • Blum B , Bar-NurO, Golan-LevT, BenvenistyN. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat. Biotechnol.27(3), 281–287(2009).
  • Unger C , SkottmanH, BlombergP, DilberMS, HovattaO. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet.17(R1), R48–R53 (2008).
  • Ellerstrom C , StrehlR, MoyaKet al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24(10), 2170–2176(2006).
  • Belardelli F , RizzaP, MorettiF, CarellaC, GalliMC, MigliaccioG. Translational research on advanced therapies. Ann. Ist. Super. Sanita47(1), 72–78(2011).
  • Gage FH . Mammalian neural stem cells. Science287, 1433–1438(2000).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.