119
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Toward Peptide-Based Bioelectronics: Reductionist Design of Conductive Pili Mimetics

&
Pages 131-137 | Received 23 Jan 2018, Accepted 24 Apr 2018, Published online: 25 May 2018

References

  • Creasey RCG , MostertAB, NguyenTAH, VirdisB, FreguiaS, LaycockB . Microbial nanowires – electron transport and the role of synthetic analogues . Acta Biomater.69, 1 – 30 (2018).
  • Tovar JD , DiegelmanSR, WallBD . Recent developments toward the synthesis of supramolecular bioelectronic nanostructures . In : Nanopatterning and Nanoscale Devices for Biological Applications . SelimovicS ( Ed.). CRC Press, Boca Raton, FL, USA, 93 – 115 (2015).
  • Tsien RY . The green fluorescent protein . Annu. Rev. Biochem.67, 509 – 544 (1998).
  • Giltner CL , van SchaikEJ, AudetteGFet al. The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces . Mol. Microbiol.59, 1083 – 1096 (2006).
  • Adler-Abramovich L , RechesM, SedmanVL, AllenS, TendlerSJB, GazitE . Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications . Langmuir22, 1313 – 1320 (2006).
  • Adhikari RY , MalvankarNS, TuominenMT, LovleyDR . Conductivity of individual Geobacter pili . RSC Adv.6, 8354 – 8357 (2016).
  • Tan Y , AdhikariRY, MalvankarNSet al. Synthetic biological protein nanowires with high conductivity . Small12, 4481 – 4485 (2016).
  • Lampa-Pastirk S , VeazeyJP, WalshKAet al. Thermally activated charge transport in microbial protein nanowires . Sci. Rep.6, 23517 (2016).
  • Tan Y , AdhikariRY, MalvankarNSet al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity . mBio8, e02203 – 16 (2017).
  • Georgiadou M , PelicicV . Type IV pili: functions and biogenesis . In : Bacterial Pili: Structure, Synthesis and Role in Disease . BarocchiMA, TelfordJL ( Eds). CAB International, Oxfordshire, UK, 71 – 84 (2014).
  • Craig L , VolkmannN, ArvaiASet al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions . Mol. cell23, 651 – 662 (2006).
  • Reardon PN , MuellerKT . Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens . J. Biol. Chem.288, 29260 – 29266 (2013).
  • Reguera G , MccarthyKD, MehtaT, NicollJS, TuominenMT, LovleyDR . Extracellular electron transfer via microbial nanowires . Nature435, 1098 – 1101 (2005).
  • Lovley DR . Electrically conductive pili: biological function and potential applications in electronics . Curr. Opin. Electrochem.4, 190 – 198 (2017).
  • Ing NL , NuscaTD, HochbaumAI . Geobacter sulfurreducens pili support ohmic electronic conduction in aqueous solution . Phys. Chem. Chem. Phys.19, 21791 – 21799 (2017).
  • Lovley DR . Syntrophy goes electric: direct interspecies electron transfer . Annu. Rev. Microbiol.71, 643 – 664 (2017).
  • Walker DJF , AdhikariRY, HolmesDEet al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms . ISME J.12, 48 – 58 (2018).
  • Malvankar NS , YalcinSE, TuominenMT, LovleyDR . Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy . Nat. Nanotechnol.9, 1012 – 1017 (2014).
  • Malvankar NS , VargasM, NevinKPet al. Tunable metallic-like conductivity in microbial nanowire networks . Nat. Nanotechnol.6, 573 – 579 (2011).
  • Malvankar NS , VargasM, NevinKet al. Structural basis for metallic-like conductivity in microbial nanowires . mBio6, e00084 – 15 (2015).
  • Feliciano GT , SteidlRJ, RegueraG . Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations . Phys. Chem. Chem. Phys.17, 22217 – 22226 (2015).
  • Vargas M , MalvankarNS, TremblayP-Let al. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens . mBio4, e00105 – 13 (2013).
  • Adhikari R . Study of charge transport mechanism in microbial nanowires . PhD dissertation. Univ. Mass., Amherst, MA, USA (2016).
  • D'souza SE , GinsbergMH, PlowEF . Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif . Trends Biochem. Sci.16, 246 – 250 (1991).
  • Seker UOS , DemirHV . Material binding peptides for nanotechnology . Molecules16, 1426 – 1451 (2011).
  • Reches M , GazitE . Casting metal nanowires within discrete self-assembled peptide nanotubes . Science300, 625 – 627 (2003).
  • Gazit E . Mechanistic studies of the process of amyloid fibrils formation by the use of peptide fragments and analogues: implications for the design of fibrillization inhibitors . Curr. Med. Chem.9, 1725 – 1735 (2002).
  • Apostolovic B , DanialM, KlokH-A . Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials . Chem. Soc. Rev.39, 3541 – 3575 (2010).
  • O'leary LER , FallasJA, BakotaEL, KangMK, HartgerinkJD . Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel . Nat. Chem.3, 821 – 828 (2011).
  • Audette GF , van SchaikEJ, HazesB, IrvinRT . DNA-binding protein nanotubes: learning from nature's nanotech examples . Nano Lett.4, 1897 – 1902 (2004).
  • Audette GF , HazesB . Development of protein nanotubes from a multi-purpose biological structure . J. Nanosci. Nanotechnol.7, 2222 – 2229 (2007).
  • Guterman T , KornreichM, SternAet al. Formation of bacterial pilus-like nanofibres by designed minimalistic self-assembling peptides . Nat. Commun.7, 13482 (2016).
  • Creasey RCG , ShingayaY, NakayamaT . Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers . Mater. Chem. Phys.158, 52 – 59 (2015).
  • Sheth HB , LeeKK, WongWYet al. The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence βGalNAc(1–4)βGal found in glycosphingolipids asialo-GM1 and asialo-GM2 . Mol. Microbiol.11, 715 – 723 (1994).
  • Chow D , NunaleeML, LimDW, SimnickAJ, ChilkotiA . Peptide-based biopolymers in biomedicine and biotechnology . Mater. Sci. Eng. R Rep.62, 125 – 155 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.