542
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomarkers in Diagnosing and Treatment of Acute Heart Failure

, &
Pages 1235-1249 | Received 31 Mar 2019, Accepted 25 Jul 2019, Published online: 03 Oct 2019

References

  • Jackson SL , TongX, KingRJ, LoustalotF, HongY, RitcheyMD. National burden of heart failure events in the United States, 2006 to 2014. Circ. Heart Fail.11(12), e004873 (2018).
  • Bui AL , HorwichTB, FonarowGC. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol.8(1), 30–41 (2011).
  • Renier W , WinckelmannKH, VerbakelJY, AertgeertsB, BuntinxF. Signs and symptoms in adult patients with acute dyspnea: a systematic review and meta-analysis. Eur. J. Emerg. Med.25(1), 3–11 (2018).
  • Sartini S , FrizziJ, BorselliMet al. Which method is best for an early accurate diagnosis of acute heart failure? Comparison between lung ultrasound, chest x-ray and NT pro-BNP performance: a prospective study. Intern. Emerg. Med.12(6), 861–869 (2017).
  • Yancy CW , JessupM, BozkurtBet al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation70(6), 776–803 (2017).
  • Benjamin Emelia J , MuntnerP, AlonsoAet al. Heart disease and stroke statistics – 2019 update: a report from the American Heart Association. Circulation139(10), e56–e528 (2019).
  • Akintoye E , BriasoulisA, EgbeAet al. National trends in admission and in-hospital mortality of patients with heart failure in the United States (2001–2014). J. Am. Heart Assoc.6(12), pii: e006955 (2017).
  • Coats AJS , PieskeB, LindeCet al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J.37(27), 2129–2200 (2016).
  • Rogers RK , StehlikJ, StoddardGJet al. Adjusting for clinical covariates improves the ability of B-type natriuretic peptide to distinguish cardiac from non-cardiac dyspnoea: a sub-study of HEARD-IT. Eur. J. Heart Fail.11(11), 1043–1049 (2009).
  • Kociol RD , HortonJR, FonarowGCet al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ. Heart Fail.4(5), 628–636 (2011).
  • Hill SA , BoothRA, SantaguidaPLet al. Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail. Rev.19(4), 421–438 (2014).
  • Peacock IV WF , DeMarco T, FonarowGCet al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med.358(20), 2117–2126 (2008).
  • Pang PS , TeerlinkJR, VoorsAAet al. Use of high-sensitivity troponin t to identify patients with acute heart failure at lower risk for adverse outcomes: an exploratory analysis from the RELAX-AHF trial. JACC Heart Fail.4(7), 591–599 (2016).
  • De Lemos JA , McGuireDK, DraznerMH. B-type natriuretic peptide in cardiovascular disease. Lancet362(9380), 316–322 (2003).
  • Roberts E , LudmanAJ, DworzynskiKet al. The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ350, h910 (2015).
  • Maisel A , MuellerC, AdamsKJret al. State of the art: using natriuretic peptide levels in clinical practice. Eur. J. Heart Fail.10(9), 824–839 (2008).
  • Dao Q , KrishnaswamyP, KazanegraRet al. Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. J. Am. Coll. Cardiol.37(2), 379–385 (2001).
  • Maisel AS , PeacockWF, McMullinNet al. Timing of immunoreactive B-type natriuretic peptide levels and treatment delay in acute decompensated heart failure: an ADHERE (Acute Decompensated Heart Failure National Registry) analysis. J. Am. Coll. Cardiol.52(7), 534–540 (2008).
  • Murray H , CloadB, CollierCP, SivilottiML. Potential impact of N-terminal pro-BNP testing on the emergency department evaluation of acute dyspnea. CJEM8(4), 251–258 (2006).
  • Rutten JH , SteyerbergEW, BoomsmaFet al. N-terminal pro-brain natriuretic peptide testing in the emergency department: beneficial effects on hospitalization, costs, and outcome. Am. Heart J.156(1), 71–77 (2008).
  • Moe GW . BNP in the diagnosis and risk stratification of heart failure. Heart Fail. Monit.4(4), 116–122 (2005).
  • Januzzi JL Jr , Chen-TournouxAA, MoeG. Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am. J. Cardiol.101(3a), 29–38 (2008).
  • Behnes M , BrueckmannM, Ahmad-NejadPet al. Diagnostic performance and cost effectiveness of measurements of plasma N-terminal pro brain natriuretic peptide in patients presenting with acute dyspnea or peripheral edema. Int. J. Cardiol.135(2), 165–174 (2009).
  • Moe GW , HowlettJ, JanuzziJL, ZowallH. N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation115(24), 3103–3110 (2007).
  • Januzzi JL Jr , CamargoCA, AnwaruddinSet al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol.95(8), 948–954 (2005).
  • Wang TJ , LarsonMG, LevyDet al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am. J. Cardiol.90(3), 254–258 (2002).
  • Bachmann KN , HuangS, LeeHet al. Effect of testosterone on natriuretic peptide levels. J. Am. Coll. Cardiol.73(11), 1288–1296 (2019).
  • Kistorp C , FaberJ, GalatiusSet al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation112(12), 1756–1762 (2005).
  • Ibrahim NE , McCarthyCP, ShresthaSet al. Effect of neprilysin inhibition on various natriuretic peptide assays. J. Am. Coll. Cardiol.73(11), 1273–1284 (2019).
  • Balion CM , SantaguidaP, McKelvieRet al. Physiological, pathological, pharmacological, biochemical and hematological factors affecting BNP and NT-proBNP. Clin. Biochem.41(4–5), 231–239 (2008).
  • Yu CM , SandersonJE. Plasma brain natriuretic peptide – an independent predictor of cardiovascular mortality in acute heart failure. Eur. J. Heart Fail.1(1), 59–65 (1999).
  • Chen LJ , HungCL, YehHIet al. The utilization and prognostic impact of B-type natriuretic peptide in hospitalized acute decompensated heart failure in an Asian population. BMC Cardiovasc. Disord.16(1), 178 (2016).
  • Fonarow GC , PeacockWF, HorwichTBet al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am. J. Cardiol.101(2), 231–237 (2008).
  • Gegenhuber A , MuellerT, DieplingerB, PoelzW, PacherR, HaltmayerM. B-type natriuretic peptide and amino terminal proBNP predict one-year mortality in short of breath patients independently of the baseline diagnosis of acute destabilized heart failure. Clin. Chim. Acta370(1-2), 174–179 (2006).
  • Anand IS , FisherLD, ChiangYTet al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation107(9), 1278–1283 (2003).
  • Omar HR , GuglinM. Discharge BNP is a stronger predictor of 6-month mortality in acute heart failure compared with baseline BNP and admission-to-discharge percentage BNP reduction. Int. J. Cardiol.221, 1116–1122 (2016).
  • Khanam SS , SonJW, LeeJWet al. Prognostic value of short-term follow-up BNP in hospitalized patients with heart failure. BMC Cardiovasc. Disord.17(1), 215 (2017).
  • Salah K , KokWE, EurlingsLWet al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ELAN-HF score. Heart100(2), 115–125 (2014).
  • Januzzi JL , Van KimmenadeR, LainchburyJet al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP study. Eur. Heart J.27(3), 330–337 (2006).
  • Januzzi JL Jr , MaiselAS, SilverM, XueY, DefilippiC. Natriuretic peptide testing for predicting adverse events following heart failure hospitalization. Congest. Heart Fail.18(Suppl. 1), S9–S13 (2012).
  • Wang Y , LamKS, YauMH, XuA. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J.409(3), 623–633 (2008).
  • Park M , SweeneyG. Direct effects of adipokines on the heart: focus on adiponectin. Heart Fail. Rev.18(5), 631–644 (2013).
  • Sente T , GevaertA, Van BerendoncksA, VrintsCJ, HoymansVY. The evolving role of adiponectin as an additive biomarker in HFrEF. Heart Fail. Rev.21(6), 753–769 (2016).
  • Dai Z , ZhangY, YeHet al. Adiponectin is valuable in the diagnosis of acute heart failure with renal insufficiency. Exp. Ther. Med.16(3), 2725–2734 (2018).
  • Matsumoto M , Lee-KawabataM, TsujinoTet al. Decrease in serum adiponectin levels in response to treatment predicts good prognosis in acute decompensated heart failure. J. Clin. Hypertens.12(11), 900–904 (2010).
  • Yu HP , JenHL, YinWH, WeiJ. Circulating adiponectin levels following treatment can predict late clinical outcomes in chronic heart failure. Acta Cardiol. Sin.33(2), 139–149 (2017).
  • Dieplinger B , GegenhuberA, PoelzW, HaltmayerM, MuellerT. Prognostic value of increased adiponectin plasma concentrations in patients with acute destabilized heart failure. Clin. Biochem.42(10–11), 1190–1193 (2009).
  • Ohara T , HashimuraK, AsakuraMet al. Dynamic changes in plasma total and high molecular weight adiponectin levels in acute heart failure. J. Cardiol.58(2), 181–190 (2011).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Turchinovich A , WeizL, BurwinkelB. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem. Sci.37(11), 460–465 (2012).
  • Corsten MF , DennertR, JochemsSet al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet.3(6), 499–506 (2010).
  • Shah RV , DasS, LewisGD. Circulating microRNAs: new avenues for heart failure classification?J. Am. Coll. Cardiol.73(11), 1314–1316 (2019).
  • Wong LL , ZouR, ZhouLet al. Combining circulating microRNA and NT-proBNP to detect and categorize heart failure subtypes. J. Am. Coll. Cardiol.73(11), 1300–1313 (2019).
  • Li G , SongY, LiY-Det al. Circulating miRNA-302 family members as potential biomarkers for the diagnosis of acute heart failure. Biomark. Med.12(8), 871–880 (2018).
  • Fang YC , YehCH. Inhibition of miR-302 suppresses hypoxia-reoxygenation-induced H9c2 cardiomyocyte death by regulating Mcl-1 expression. Oxid. Med. Cell Longev.2017, 9 (2017).
  • Ovchinnikova ES , SchmitterD, VegterELet al. Signature of circulating microRNAs in patients with acute heart failure. Eur. J. Heart Fail.18(4), 414–423 (2016).
  • Tijsen AJ , CreemersEE, MoerlandPDet al. MiR423-5p as a circulating biomarker for heart failure. Circ. Res.106(6), 1035–1039 (2010).
  • Ellis KL , CameronVA, TroughtonRW, FramptonCM, EllmersLJ, RichardsAM. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur. J. Heart Fail.15(10), 1138–1147 (2013).
  • Xiao J , GaoR, BeiYet al. Circulating miR-30d predicts survival in patients with acute heart failure. Cell Physiol. Biochem.41(3), 865–874 (2017).
  • Seronde MF , VausortM, GayatEet al. Circulating microRNAs and outcome in patients with acute heart failure. PLoS ONE10(11), e0142237 (2015).
  • Bruno N , TerMaaten JM, OvchinnikovaESet al. MicroRNAs relate to early worsening of renal function in patients with acute heart failure. Int. J. Cardiol.203, 564–569 (2016).
  • Schneider SIDR , SilvelloD, MartinelliNCet al. Plasma levels of microRNA-21,-126 and-423-5p alter during clinical improvement and are associated with the prognosis of acute heart failure. Mol. Med. Rep.17(3), 4736–4746 (2018).
  • Ghali R , AltaraR, LouchWilliam Eet al. IL-33 (interleukin 33)/sST2 axis in hypertension and heart failure. Hypertension72(4), 818–828 (2018).
  • Weinberg EO , ShimpoM, DeKeulenaer GWet al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation106(23), 2961–2966 (2002).
  • Iwahana H , YanagisawaK, Ito-KosakaAet al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur. J. Biochem.264(2), 397–406 (1999).
  • Sanada S , HakunoD, HigginsLJ, SchreiterER, McKenzieAN, LeeRT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest.117(6), 1538–1549 (2007).
  • Januzzi JL Jr , PeacockWF, MaiselASet al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol.50(7), 607–613 (2007).
  • Dieplinger B , GegenhuberA, HaltmayerM, MuellerT. Evaluation of novel biomarkers for the diagnosis of acute destabilised heart failure in patients with shortness of breath. Heart95(18), 1508–1513 (2009).
  • Huang DH , SunH, ShiJP. Diagnostic value of soluble suppression of tumorigenicity-2 for heart failure. Chin. Med. J.129(5), 570–577 (2016).
  • Shah RV , Chen-TournouxAA, PicardMH, Van KimmenadeRR, JanuzziJL. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ. Heart Fail.2(4), 311–319 (2009).
  • Breidthardt T , BalmelliC, TwerenboldRet al. Heart failure therapy-induced early ST2 changes may offer long-term therapy guidance. J. Card. Fail.19(12), 821–828 (2013).
  • Pascual-Figal DA , Manzano-FernandezS, BoronatMet al. Soluble ST2, high-sensitivity troponin T-and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur. J. Heart Fail.13(7), 718–725 (2011).
  • Bayes-Genis A , ZamoraE, DeAntonio Met al. Soluble ST2 serum concentration and renal function in heart failure. J. Card. Fail.19(11), 768–775 (2013).
  • Dieplinger B , JanuzziJL, SteinmairMet al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma – the Presage™ ST2 assay. Clin. Chim. Acta409(1), 33–40 (2009).
  • Chen LQ , DeLemos JA, DasSR, AyersCR, RohatgiA. Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: the Dallas Heart study. Clin. Chem.59(3), 536–546 (2013).
  • Liu LCY , ValenteMaE, PostmusDet al. Identifying subpopulations with distinct response to treatment using plasma biomarkers in acute heart failure: results from the PROTECT trial : differential response in acute heart failure. Cardiovasc. Drugs Ther.31(3), 281–293 (2017).
  • Anand IS , RectorTS, KuskowskiM, SniderJ, CohnJN. Prognostic value of soluble ST2 in the valsartan heart failure trial. Circ. Heart Fail.7(3), 418–426 (2014).
  • Van Vark LC , Lesman-LeegteI, BaartSJet al. Prognostic value of serial ST2 measurements in patients with acute heart failure. J. Am. Coll. Cardiol.70(19), 2378–2388 (2017).
  • Ochieng J , FurtakV, LukyanovP. Extracellular functions of galectin-3. Glycoconj. J.19(7–9), 527–535 (2002).
  • Sharma UC , PokharelS, Van BrakelTJet al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation110(19), 3121–3128 (2004).
  • Sygitowicz G , TomaniakM, FilipiakKJ, KoltowskiL, SitkiewiczD. Galectin-3 in patients with acute heart failure: preliminary report on first polish experience. Adv. Clin. Exp. Med.25(4), 617–623 (2016).
  • Mueller T , GegenhuberA, LeitnerI, PoelzW, HaltmayerM, DieplingerB. Diagnostic and prognostic accuracy of galectin-3 and soluble ST2 for acute heart failure. Clin. Chim. Acta463, 158–164 (2016).
  • Stoica A , SorodocV, LionteCet al. Acute cardiac dyspnea in the emergency department: diagnostic value of N-terminal prohormone of brain natriuretic peptide and galectin-3. J. Int. Med. Res.47(1), 159–172 (2019).
  • Sanchez-Serna J , Perez-MartinezMT, Asensio-LopezMC, CasasT, NogueraJA, Pascual-FigalDA. Short-term serial measurement of galectin-3 in hospitalized patients with acute heart failure. Rev. Esp. Cardiol.71(5), 401–402 (2018).
  • Behnes M , BertschT, WeissCet al. Triple head-to-head comparison of fibrotic biomarkers galectin-3, osteopontin and gremlin-1 for long-term prognosis in suspected and proven acute heart failure patients. Int. J. Cardiol.203, 398–406 (2016).
  • Lala RI , LungeanuD, DarabantiuD, PilatL, PuschitaM. Galectin-3 as a marker for clinical prognosis and cardiac remodeling in acute heart failure. Herz43(2), 146–155 (2018).
  • Zhang T , ShaoB, LiuGA. Research on clinical value of galectin-3 in evaluating the prognosis of acute heart failure. Eur. Rev. Med. Pharmacol. Sci.21(19), 4406–4410 (2017).
  • Núñez J , RabinovichGA, SandinoJet al. Prognostic value of the interaction between galectin-3 and antigen carbohydrate 125 in acute heart failure. PLoS ONE10(4), e0122360 (2015).
  • Shah RV , Chen-TournouxAA, PicardMH, Van KimmenadeRR, JanuzziJL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail.12(8), 826–832 (2010).
  • Testa M , RossoGL, FerreriC, FeolaM. The predictive value of plasma brain natriuretic peptide and galectin-3 in elderly patients admitted for heart failure. Diseases6(4), pii: E88 (2018).
  • Miro O , GonzalezDe La Presa B, Herrero-PuentePet al. The GALA study: relationship between galectin-3 serum levels and short- and long-term outcomes of patients with acute heart failure. Biomarkers22(8), 731–739 (2017).
  • Fermann GJ , LindsellCJ, StorrowABet al. Galectin 3 complements BNP in risk stratification in acute heart failure. Biomarkers17(8), 706–713 (2012).
  • Nagaya N , SatohT, NishikimiTet al. Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation101(5), 498–503 (2000).
  • Morgenthaler NG , StruckJ, AlonsoC, BergmannA. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin. Chem.51(10), 1823–1829 (2005).
  • Lopes D , FalcaoLM. Mid-regional pro-adrenomedullin and ST2 in heart failure: contributions to diagnosis and prognosis. Rev. Port. Cardiol.36(6), 465–472 (2017).
  • Shah RV , TruongQA, GagginHK, PfannkucheJ, HartmannO, JanuzziJL Jr. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur. Heart J.33(17), 2197–2205 (2012).
  • Dieplinger B , GegenhuberA, HaltmayerM, MuellerT. Evaluation of novel biomarkers for the diagnosis of acute destabilised heart failure in patients with shortness of breath. Heart95(18), 1508 (2009).
  • Maisel A , MuellerC, NowakRet al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll. Cardiol.55(19), 2062–2076 (2010).
  • Lassus J , GayatE, MuellerCet al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int. J. Cardiol.168(3), 2186–2194 (2013).
  • Ara-Somohano C , BonadonaA, CarpentierFet al. Evaluation of eight biomarkers to predict short-term mortality in patients with acute severe dyspnea. Minerva. Anestesiol.83(8), 824–835 (2017).
  • Pervez MO , LyngbakkenMN, MyhrePLet al. Mid-regional pro-adrenomedullin in patients with acute dyspnea: data from the Akershus Cardiac Examination (ACE) 2 study. Clin. Biochem.50(7–8), 394–400 (2017).
  • Caidahl K , UelandT, AukrustP. Osteoprotegerin: a biomarker with many faces. Arterioscler. Thromb. Vasc. Biol.30(9), 1684–1686 (2010).
  • Ueland T , YndestadA, ØieEet al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation111(19), 2461–2468 (2005).
  • Roysland R , PervezMO, PedersenMHet al. Diagnostic and prognostic properties of osteoprotegerin in patients with acute dyspnoea: observations from the Akershus Cardiac Examination (ACE) 2 study. PLoS ONE11(7), e0160182 (2016).
  • Frioes F , LaszczynskaO, AlmeidaPBet al. Prognostic value of osteoprotegerin in acute heart failure. Can. J. Cardiol.31(10), 1266–1271 (2015).
  • Aramburu-Bodas O , Garcia-CasadoB, Salamanca-BautistaPet al. Relationship between osteoprotegerin and mortality in decompensated heart failure with preserved ejection fraction. J. Cardiovasc. Med.16(6), 438–443 (2015).
  • Morgenthaler NG , StruckJ, AlonsoC, BergmannA. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem.52(1), 112 (2006).
  • Imamura T , KinugawaK, HatanoMet al. Low cardiac output stimulates vasopressin release in patients with stage D heart failure. Circ. J.78(9), 2259 –2267 (2014).
  • Winther JA , BrynildsenJ, HøisethADet al. Prognostic and diagnostic significance of copeptin in acute exacerbation of chronic obstructive pulmonary disease and acute heart failure: data from the ACE 2 study. Respir. Res.18(1), 184–184 (2017).
  • Potocki M , BreidthardtT, MuellerAet al. Copeptin and risk stratification in patients with acute dyspnea. Crit. Care14(6), R213 (2010).
  • Peacock WF , NowakR, ChristensonRet al. Short-term mortality risk in emergency department acute heart failure. Acad. Emerg. Med.18(9), 947–958 (2011).
  • Herrero-Puente P , Prieto-GarciaB, Garcia-GarciaMet al. Predictive capacity of a multimarker strategy to determine short-term mortality in patients attending a hospital emergency department for acute heart failure. BIO-EAHFE study. Clin. Chim. Acta466, 22–30 (2017).
  • Maisel A , XueY, ShahKet al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ. Heart Fail.4(5), 613–620 (2011).
  • Parmacek MS , SolaroRJ. Biology of the troponin complex in cardiac myocytes. Prog. Cardiovasc. Dis.47(3), 159–176 (2004).
  • deCouto G , OuzounianM, LiuPP. Early detection of myocardial dysfunction and heart failure. Nat. Rev. Cardiol.7(6), 334–344 (2010).
  • Giannitsis E , KatusHA. Cardiac troponin level elevations not related to acute coronary syndromes. Nat. Rev. Cardiol.10(11), 623–634 (2013).
  • Omland T , DeLemos JA, SabatineMSet al. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med.361(26), 2538–2547 (2009).
  • Ilva T , LassusJ, Siirilä-WarisKet al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur. J. Heart Fail.10(8), 772–779 (2008).
  • Peacock WF , DeMarco T, FonarowGCet al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med.358(20), 2117–2126 (2008).
  • Magnussen C , BlankenbergS. Biomarkers for heart failure: small molecules with high clinical relevance. J. Intern. Med.283(6), 530–543 (2018).
  • Jia G , HillMA, SowersJR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res.122(4), 624–638 (2018).
  • Coats AJS , AnkerSD. Insulin resistance in chronic heart failure. J. Cardiovasc. Pharmacol.35(7 Suppl. 4), S9–S14 (2000).
  • Varjabedian L , BourjiM, PourafkariL, NaderND. Cardioprotection by metformin: beneficial effects beyond glucose reduction. Am. J. Cardiovasc. Drugs18(3), 181–193 (2018).
  • Cubbon RM , WoolstonA, AdamsBet al. Prospective development and validation of a model to predict heart failure hospitalisation. Heart100(12), 923 (2014).
  • Matsushita K , BleckerS, Pazin-FilhoAet al. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes59(8), 2020–2026 (2010).
  • Targher G , DaurizM, TavazziLet al. Prognostic impact of in-hospital hyperglycemia in hospitalized patients with acute heart failure: results of the IN-HF (Italian Network on Heart Failure) Outcome registry. Int. J. Cardiol.203, 587–593 (2016).
  • Chouihed T , BuesslerA, BassandAet al. Hyponatraemia, hyperglycaemia and worsening renal function at first blood sample on emergency department admission as predictors of in-hospital death in patients with dyspnoea with suspected acute heart failure: retrospective observational analysis of the PARADISE cohort. BMJ Open8(3), e019557 (2018).
  • Mebazaa A , GayatE, LassusJet al. Association between elevated blood glucose and outcome in acute heart failure: results from an international observational cohort. J. Am. Coll. Cardiol.61(8), 820–829 (2013).
  • Kosiborod M , InzucchiSE, SpertusJAet al. Elevated admission glucose and mortality in elderly patients hospitalized with heart failure. Circulation119(14), 1899–1907 (2009).
  • Zadok OI , KornowskiR, GoldenbergIet al. Admission blood glucose and 10-year mortality among patients with or without pre-existing diabetes mellitus hospitalized with heart failure. Cardiovasc. Diabetol.16(1), 102–102 (2017).
  • Targher G , DaurizM, LarocheCet al. In-hospital and 1-year mortality associated with diabetes in patients with acute heart failure: results from the ESC-HFA Heart Failure Long-Term Registry. Eur. J. Heart Fail.19(1), 54–65 (2017).
  • Schaap FG , BinasB, DannebergH, VanDer Vusse GJ, GlatzJF. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ. Res.85(4), 329–337 (1999).
  • Kakoti A , GoswamiP. Heart type fatty acid binding protein: structure, function and biosensing applications for early detection of myocardial infarction. Biosens. Bioelectron.43, 400–411 (2013).
  • Azzazy HM , PelsersMM, ChristensonRH. Unbound free fatty acids and heart-type fatty acid–binding protein: diagnostic assays and clinical applications. Clin. Chem.52(1), 19–29 (2006).
  • Hoffmann U , EspeterF, WeißCet al. Ischemic biomarker heart-type fatty acid binding protein (hFABP) in acute heart failure-diagnostic and prognostic insights compared to NT-proBNP and troponin I. BMC Cardiovasc. Disord.15(1), 50 (2015).
  • Kazimierczyk E , KazimierczykR, Harasim-SymborEet al. Persistently elevated plasma heart-type fatty acid binding protein concentration is related with poor outcome in acute decompensated heart failure patients. Clin. Chim. Acta487, 48–53 (2018).
  • Shirakabe A , HataN, KobayashiNet al. Worsening renal failure in patients with acute heart failure: the importance of cardiac biomarkers. ESC Heart Fail.6(2), 416–427 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.