104
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical Potential of Long Non-Coding Rna Linc01133 As A Promising Biomarker and Therapeutic Target in Cancers

ORCID Icon, , , , , , , , , , , & ORCID Icon show all
Pages 349-369 | Received 25 Aug 2021, Accepted 10 Jan 2022, Published online: 23 Feb 2022

References

  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Sung H , FerlayJ, SiegelRLet al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. doi:10.3322/caac.21660 (2021) ( Epub ahead of print).
  • Ling H , VincentK, PichlerMet al. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene34(39), 5003–5011 (2015).
  • Batista PJ , ChangHY. Long noncoding RNAs: cellular address codes in development and disease. Cell152(6), 1298–1307 (2013).
  • Ulitsky I , ShkumatavaA, JanCH, SiveH, BartelDP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell147(7), 1537–1550 (2011).
  • Fatica A , BozzoniI. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet.15(1), 7–21 (2014).
  • Wapinski O , ChangHY. Long noncoding RNAs and human disease. Trends Cell Biol.21(6), 354–361 (2011).
  • Tamang S , AcharyaV, RoyDet al. SNHG12: an LncRNA as a potential therapeutic target and biomarker for human cancer. Front. Oncol.9, 901 (2019).
  • Zang C , NieFQ, WangQet al. Long non-coding RNA LINC01133 represses KLF2, P21 and E-cadherin transcription through binding with EZH2, LSD1 in non small cell lung cancer. Oncotarget7(10), 11696–11707 (2016).
  • Xie CR , WangF, ZhangSet al. Long noncoding RNA HCAL facilitates the growth and metastasis of hepatocellular carcinoma by acting as a ceRNA of LAPTM4B. Mol. Ther. Nucleic Acids9, 440–451 (2017).
  • Shen J , HongL, YuD, CaoT, ZhouZ, HeS. LncRNA XIST promotes pancreatic cancer migration, invasion and EMT by sponging miR-429 to modulate ZEB1 expression. Int. J. Biochem. Cell Biol.113, 17–26 (2019).
  • Liu H , DengH, ZhaoY, LiC, LiangY. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J. Exp. Clin. Cancer Res.37(1), 279 (2018).
  • Xing F , LiuY, WuSYet al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res.78(15), 4316–4330 (2018).
  • Kangarlouei R , IraniS, NoormohammadiZ, MemariF, MirfakhraieR. ANRIL and ANRASSF1 long noncoding RNAs are upregulated in gastric cancer. J. Cell. Biochem.120(8), 12544–12548 (2019).
  • Yao F , WangQ, WuQ. The prognostic value and mechanisms of lncRNA UCA1 in human cancer. Cancer Manag. Res.11, 7685–7696 (2019).
  • Chang L , GuoR, YuanZ, ShiH, ZhangD. LncRNA HOTAIR regulates CCND1 and CCND2 expression by sponging miR-206 in ovarian cancer. Cell Physiol. Biochem.49(4), 1289–1303 (2018).
  • Xue X , YangYA, ZhangAet al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene35(21), 2746–2755 (2016).
  • Chen Z , HeA, WangD, LiuY, HuangW. Long noncoding RNA HOTTIP as a novel predictor of lymph node metastasis and survival in human cancer: a systematic review and meta-analysis. Oncotarget8(8), 14126–14132 (2017).
  • Shi SH , JiangJ, ZhangWet al. A novel lncRNA HOXC-AS3 acts as a miR-3922-5p sponge to promote breast cancer metastasis. Cancer Invest.38(1), 1–12 (2020).
  • Zhang E , HeX, ZhangCet al. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol.19(1), 154 (2018).
  • Sun Y , MaL. New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers (Basel)11(2), 216 (2019).
  • Li C , ZhaoZ, ZhouZ, LiuR. Linc-ROR confers gemcitabine resistance to pancreatic cancer cells via inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis. Cancer Chemother. Pharmacol.78(6), 1199–1207 (2016).
  • Wang J , ZouJX, XueXet al. ROR-gamma drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat. Med.22(5), 488–496 (2016).
  • Sharma U , BarwalTS, AcharyaV, TamangS, VasquezKM, JainA. Cancer susceptibility candidate 9 (CASC9): a novel targetable long noncoding RNA in cancer treatment. Transl. Oncol.13(8), 100774 (2020).
  • Zhang K , LiuP, TangHet al. AFAP1-AS1 promotes epithelial–mesenchymal transition and tumorigenesis through Wnt/beta-catenin signaling pathway in triple-negative breast cancer. Front. Pharmacol.9, 1248 (2018).
  • Tang XD , ZhangDD, JiaL, JiW, ZhaoYS. lncRNA AFAP1-AS1 promotes migration and invasion of non-small cell lung cancer via up-regulating IRF7 and the RIG-I-like receptor signaling pathway. Cell Physiol. Biochem.50(1), 179–195 (2018).
  • Huang CS , ChuJ, ZhuXXet al. The C/EBPbeta-LINC01133 axis promotes cell proliferation in pancreatic ductal adenocarcinoma through upregulation of CCNG1. Cancer Lett.421, 63–72 (2018).
  • Sharma U , BarwalTS, MalhotraAet al. Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer. Life Sci.257, 118035 (2020).
  • Zhang W , DuM, WangTet al. Long non-coding RNA LINC01133 mediates nasopharyngeal carcinoma tumorigenesis by binding to YBX1. Am. J. Cancer Res.9(4), 779–790 (2019).
  • Yang XZ , ChengTT, HeQJet al. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/beta-catenin pathway. Mol. Cancer17(1), 126 (2018).
  • Song Z , ZhangX, LinY, WeiY, LiangS, DongC. LINC01133 inhibits breast cancer invasion and metastasis by negatively regulating SOX4 expression through EZH2. J. Cell. Mol. Med.23(11), 7554–7565 (2019).
  • Weng YC , MaJ, ZhangJ, WangJC. Long non-coding RNA LINC01133 silencing exerts antioncogenic effect in pancreatic cancer through the methylation of DKK1 promoter and the activation of Wnt signaling pathway. Cancer Biol. Ther.20(3), 368–380 (2019).
  • Sharma U , BarwalTS, KhandelwalAet al. LncRNA ZFAS1 inhibits triple-negative breast cancer by targeting STAT3. Biochimie182, 99–107 (2021).
  • Mishra K , KanduriC. Understanding long noncoding RNA and chromatin interactions: what we know so far. Noncoding RNA5(4), 54 (2019).
  • Fagerberg L , HallstromBM, OksvoldPet al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteomics13(2), 397–406 (2014).
  • Kong J , SunW, ZhuW, LiuC, ZhangH, WangH. Long noncoding RNA LINC01133 inhibits oral squamous cell carcinoma metastasis through a feedback regulation loop with GDF15. J. Surg. Onco.118(8), 1326–1334 (2018).
  • Tu Z , SchmollerlJ, CuiffoBG, KarnoubAE. Microenvironmental regulation of long noncoding RNA LINC01133 promotes cancer stem cell-like phenotypic traits in triple-negative breast cancers. Stem Cells37(10), 1281–1292 (2019).
  • Wang M , MaX, ZhuCet al. The prognostic value of long non coding RNAs in non small cell lung cancer: a meta-analysis. Oncotarget7(49), 81292–81304 (2016).
  • Zhang J , ZhuN, ChenX. A novel long noncoding RNA LINC01133 is upregulated in lung squamous cell cancer and predicts survival. Tumour Biol.36(10), 7465–7471 (2015).
  • Yang XZ , HeQJ, ChengTTet al. Predictive value of LINC01133 for unfavorable prognosis was impacted by alcohol in esophageal squamous cell carcinoma. Cell. Physiol. Biochem.48(1), 251–262 (2018).
  • Foroughi K , AminiM, AtashiA, MahmoodzadehH, HamannU, ManoochehriM. Tissue-specific down-regulation of the long non-coding RNAs PCAT18 and LINC01133 in gastric cancer development. Int. J. Mol. Sci.19(12), 3881 (2018).
  • Zheng YF , ZhangXY, BuYZ. LINC01133 aggravates the progression of hepatocellular carcinoma by activating the PI3K/AKT pathway. J. Cell. Biochem.120(3), 4172–4179 (2019).
  • Giulietti M , RighettiA, PrincipatoG, PivaF. LncRNA co-expression network analysis reveals novel biomarkers for pancreatic cancer. Carcinogenesis39(8), 1016–1025 (2018).
  • Zhang JH , LiAY, WeiN. Downregulation of long non-coding RNA LINC01133 is predictive of poor prognosis in colorectal cancer patients. Eur. Rev. Med. Pharmacol. Sci.21(9), 2103–2107 (2017).
  • Kong J , SunW, LiCet al. Long non-coding RNA LINC01133 inhibits epithelial–mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett.380(2), 476–484 (2016).
  • Feng Y , QuL, WangX, LiuC. LINC01133 promotes the progression of cervical cancer by sponging miR-4784 to up-regulate AHDC1. Cancer Biol. Ther.20(12), 1453–1461 (2019).
  • Mao X , QinX, LiLet al. A 15-long non-coding RNA signature to improve prognosis prediction of cervical squamous cell carcinoma. Gynecol. Oncol.149(1), 181–187 (2018).
  • Zeng HF , QiuHY, FengFB. Long Noncoding RNA LINC01133 functions as an miR-422a sponge to aggravate the tumorigenesis of human osteosarcoma. Oncol. Res.26(3), 335–343 (2018).
  • Liu S , XiX. LINC01133 contribute to epithelial ovarian cancer metastasis by regulating miR-495-3p/TPD52 axis. Biochem. Biophys. Res. Commun.533(4), 1088–1094 (2020).
  • Liu M , ShenC, WangC. Long noncoding RNA LINC01133 confers tumor-suppressive functions in ovarian cancer by regulating leucine-rich repeat kinase 2 as an miR-205 sponge. Am. J. Pathol.189(11), 2323–2339 (2019).
  • Li Z , XuD, ChenX, LiS, ChanMTV, WuWKK. LINC01133: an emerging tumor-associated long non-coding RNA in tumor and osteosarcoma. Environ. Sci. Pollut. Res. Int.27(26), 32467–32473 (2020).
  • Liberati A , AltmanDG, TetzlaffJet al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ339, b2700 (2009).
  • Siegel R , NaishadhamD, JemalA. Cancer statistics, 2013. CA Cancer J. Clin.63(1), 11–30 (2013).
  • Siegel R , NaishadhamD, JemalA. Cancer statistics, 2012. CA Cancer J. Clin.62(1), 10–29 (2012).
  • Pisani P , ParkinDM, BrayF, FerlayJ. Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer83(1), 18–29 (1999).
  • Ramalingam S , PawlishK, GadgeelS, DemersR, KalemkerianGP. Lung cancer in young patients: analysis of a Surveillance, Epidemiology, and End Results database. J. Clin. Oncol.16(2), 651–657 (1998).
  • Jemal A , SiegelR, XuJ, WardE. Cancer statistics, 2010. CA Cancer J. Clin.60(5), 277–300 (2010).
  • Verdecchia A , FrancisciS, BrennerHet al. Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data. Lancet Oncol.8(9), 784–796 (2007).
  • Wistuba II . Genetics of preneoplasia: lessons from lung cancer. Curr. Mol. Med.7(1), 3–14 (2007).
  • Klebe S , HendersonDW. Facts and fiction: premalignant lesions of lung tissues. Pathology45(3), 305–315 (2013).
  • Shen Q , YangXR, TanYet al. High level of serum protein DKK1 predicts poor prognosis for patients with hepatocellular carcinoma after hepatectomy. Hepat. Oncol.2(3), 231–244 (2015).
  • Sahasrabuddhe VV , GunjaMZ, GraubardBIet al. Nonsteroidal anti-inflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J. Natl Cancer Inst.104(23), 1808–1814 (2012).
  • Spangenberg HC , ThimmeR, BlumHE. Advances in prevention and diagnosis of hepatocellular carcinoma. Expert Rev. Gastroenterol. Hepatol.2(3), 425–433 (2008).
  • Wang M , WuH, LiSet al. SYNJ2BP promotes the degradation of PTEN through the lysosome-pathway and enhances breast tumor metastasis via PI3K/AKT/SNAI1 signaling. Oncotarget8(52), 89692–89706 (2017).
  • Wang H , WuQ, LiuZet al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death Dis.5, e1155 (2014).
  • Siegel RL , MillerKD, JemalA. Cancer Statistics, 2017. CA Cancer J. Clin.67(1), 7–30 (2017).
  • Hidalgo M . Pancreatic cancer. N. Engl. J. Med.362(17), 1605–1617 (2010).
  • Garrido-Laguna I , HidalgoM. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat. Rev. Clin. Oncol.12(6), 319–334 (2015).
  • Regalo G , ForsterS, ResendeCet al. C/EBPbeta regulates homeostatic and oncogenic gastric cell proliferation. J. Mol. Med. (Berl.)94(12), 1385–1395 (2016).
  • Zhang J , GaoS, ZhangYet al. MiR-216a-5p inhibits tumorigenesis in pancreatic cancer by targeting TPT1/mTORC1 and is mediated by LINC01133. Int. J. Biol. Sci.16(14), 2612–2627 (2020).
  • Anastas JN , MoonRT. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer13(1), 11–26 (2013).
  • Hirata H , HinodaY, NakajimaKet al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int. J. Cancer128(8), 1793–1803 (2011).
  • Lamora A , TalbotJ, MullardM, Brounais-LeRoyer B, RediniF, VerrecchiaF. TGF-beta signaling in bone remodeling and osteosarcoma progression. J. Clin. Med.5(11), 96 (2016).
  • Verrecchia F , RediniF. Transforming growth factor-beta signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment. Front. Oncol.8, 133 (2018).
  • Liu S , ChenS, ZengJ. TGFbeta signaling: a complex role in tumorigenesis (Review). Mol. Med. Rep.17(1), 699–704 (2018).
  • Liu X , SunY, ConstantinescuSN, KaramE, WeinbergRA, LodishHF. Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl Acad. Sci. USA94(20), 10669–10674 (1997).
  • Gierach GL , BurkeA, AndersonWF. Epidemiology of triple negative breast cancers. Breast Dis.32(1–2), 5–24 (2010).
  • Cuiffo BG , CampagneA, BellGWet al. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell15(6), 762–774 (2014).
  • Ghaleb AM , YangVW. Kruppel-like factor 4 (KLF4): what we currently know. Gene611, 27–37 (2017).
  • Nagata T , ShimadaY, SekineSet al. KLF4 and NANOG are prognostic biomarkers for triple-negative breast cancer. Breast Cancer24(2), 326–335 (2017).
  • Ferlay J , ColombetM, SoerjomataramIet al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer144(8), 1941–1953 (2019).
  • Yu MC , YuanJM. Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol.12(6), 421–429 (2002).
  • Blanchard P , LeeA, MarguetSet al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol.16(6), 645–655 (2015).
  • Han L , LinSJ, PanJJet al. Prognostic factors of 305 nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy. Chin. J. Cancer29(2), 145–150 (2010).
  • Shi J , WangDM, WangCMet al. Insulin receptor substrate-1 suppresses transforming growth factor-beta1-mediated epithelial–mesenchymal transition. Cancer Res.69(18), 7180–7187 (2009).
  • Yang J , ManiSA, DonaherJLet al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117(7), 927–939 (2004).
  • Peinado H , PortilloF, CanoA. Transcriptional regulation of cadherins during development and carcinogenesis. Int. J. Dev. Biol.48(5–6), 365–375 (2004).
  • Zhou LL , NiJ, FengWTet al. High YBX1 expression indicates poor prognosis and promotes cell migration and invasion in nasopharyngeal carcinoma. Exp. Brain Res.361(1), 126–134 (2017).
  • Pires FR , RamosAB, OliveiraJB, TavaresAS, LuzPS, SantosTC. Oral squamous cell carcinoma: clinicopathological features from 346 cases from a single oral pathology service during an 8-year period. J. Appl. Oral Sci.21(5), 460–467 (2013).
  • Fang J , LiX, MaDet al. Prognostic significance of tumor infiltrating immune cells in oral squamous cell carcinoma. BMC Cancer17(1), 375 (2017).
  • Omar EA . The outline of prognosis and new advances in diagnosis of oral squamous cell carcinoma (OSCC): review of the literature. J. Oral Oncol.2013 (2013).
  • Jablonska-Trypuc A , MatejczykM, RosochackiS. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem.31(Suppl. 1), 177–183 (2016).
  • Jin YJ , LeeJH, KimYM, OhGT, LeeH. Macrophage inhibitory cytokine-1 stimulates proliferation of human umbilical vein endothelial cells by up-regulating cyclins D1 and E through the PI3K/Akt-, ERK-, and JNK-dependent AP-1 and E2F activation signaling pathways. Cell. Signal.24(8), 1485–1495 (2012).
  • Moreno CS . SOX4: the unappreciated oncogene. Semin. Cancer Biol.67(Pt 1), 57–64 (2020).
  • Laugesen A , HojfeldtJW, HelinK. Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb. Perspect. Med.6(9), a026575 (2016).
  • Domper Arnal MJ , FerrandezArenas A, LanasArbeloa A. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J. Gastroenterol.21(26), 7933–7943 (2015).
  • Zhang Y . Epidemiology of esophageal cancer. World J. Gastroenterol.19(34), 5598–5606 (2013).
  • Kollarova H , MachovaL, HorakovaD, JanoutovaG, JanoutV. Epidemiology of esophageal cancer – an overview article. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub.151(1), 17–20 (2007).
  • Shimizu T , MarusawaH, MatsumotoYet al. Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection. Gastroenterology147(2), 407–417 e403 (2014).
  • Nagini S . Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J. Gastrointest. Oncol.4(7), 156–169 (2012).
  • Gigek CO , ChenES, CalcagnoDQ, WisnieskiF, BurbanoRR, SmithMA. Epigenetic mechanisms in gastric cancer. Epigenomics4(3), 279–294 (2012).
  • Bracken CP , ScottHS, GoodallGJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat. Rev. Genet.17(12), 719–732 (2016).
  • Clevers H , NusseR. Wnt/beta-catenin signaling and disease. Cell149(6), 1192–1205 (2012).
  • Rawla P , SunkaraT, BarsoukA. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz. Gastroenterol.14(2), 89–103 (2019).
  • Motohara T , KatabuchiH. Ovarian cancer stemness: biological and clinical implications for metastasis and chemotherapy resistance. Cancers11(7), 907 (2019).
  • Fortner RT , PooleEM, WentzensenNAet al. Ovarian cancer risk factors by tumor aggressiveness: an analysis from the Ovarian Cancer Cohort Consortium. Int. J. Cancer145(1), 58–69 (2019).
  • Oza AM , CookAD, PfistererJet al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol.16(8), 928–936 (2015).
  • Yang H , QuH, HuangHet al. Exosomes-mediated transfer of long noncoding RNA LINC01133 represses bladder cancer progression via regulating the Wnt signaling pathway. Cell Biol. Int. doi:10.1002/cbin.11590 (2021) ( Epub ahead of print).
  • Yang W , YueY, YinF, QiZ, GuoR, XuY. LINC01133 and LINC01243 are positively correlated with endometrial carcinoma pathogenesis. Arch. Gynecol. Obstet.303(1), 207–215 (2021).
  • Van Audenhove I , GettemansJ. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine8, 40–48 (2016).
  • Watrin M , Von PelchrzimF, DausseE, SchroederR, ToulmeJJ. In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1. Biochemistry48(26), 6278–6284 (2009).
  • Kong J , SunW, LiCet al. Long non-coding RNA LINC01133 inhibits epithelial–mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett.380(2), 476–484 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.