5,213
Views
0
CrossRef citations to date
0
Altmetric
Review

Cell-Free Dna As A Solid-Organ Transplant Biomarker: Technologies and Approaches

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 401-415 | Received 07 Nov 2021, Accepted 14 Jan 2022, Published online: 23 Feb 2022

References

  • Loupy A , AubertO, ReesePP, BastienO, BayerF, JacquelinetC. Organ procurement and transplantation during the COVID-19 pandemic. Lancet395(10237), e95–e96 (2020).
  • Lodhi SA , LambKE, Meier-KriescheHU. Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am. J. Transplant11(6), 1226–1235 (2011).
  • Rana A , GodfreyEL. Outcomes in solid-organ transplantation: success and stagnation. Tex. Heart Inst. J.46(1), 75–76 (2019).
  • Cozzi E , ColpoA, DeSilvestro G. The mechanisms of rejection in solid organ transplantation. Transfus. Apher. Sci.56(4), 498–505 (2017).
  • Gwinner W . Renal transplant rejection markers. World J. Urol.25(5), 445–455 (2007).
  • Josephson MA . Monitoring and managing graft health in the kidney transplant recipient. Clin. J. Am. Soc. Nephrol.6(7), 1774–1780 (2011).
  • Massoud O , HeimbachJ, VikerKet al. Noninvasive diagnosis of acute cellular rejection in liver transplant recipients: a proteomic signature validated by enzyme-linked immunosorbent assay. Liver Transpl.17(6), 723–732 (2011).
  • Kindel SJ , HsuHH, HussainT, JohnsonJN, McmahonCJ, KuttyS. Multimodality noninvasive imaging in the monitoring of pediatric heart transplantation. J. Am. Soc. Echocardiogr.30(9), 859–870 (2017).
  • Butler CR , SavuA, BakalJAet al. Correlation of cardiovascular magnetic resonance imaging findings and endomyocardial biopsy results in patients undergoing screening for heart transplant rejection. J. Heart Lung Transplant.34(5), 643–650 (2015).
  • Ochman M , WojarskiJ, WiorekAet al. Usefulness of the impulse oscillometry system in graft function monitoring in lung transplant recipients. Transplant Proc.50(7), 2070–2074 (2018).
  • Gielis EM , LedeganckKJ, DeWinter BYet al. Cell-free DNA: an upcoming biomarker in transplantation. Am. J. Transplant15(10), 2541–2551 (2015).
  • Lo YM , TeinMS, PangCC, YeungCK, TongKL, HjelmNM. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet351(9112), 1329–1330 (1998).
  • Mandel P , MetaisP. Nuclear acids in human blood plasma. CR Seances Soc. Biol. Fil.142(3–4), 241–243 (1948).
  • Szilagyi M , PosO, MartonEet al. Circulating cell-free nucleic acids: main characteristics and clinical application. Int. J. Mol. Sci.21(18), 6827 (2020).
  • Bronkhorst AJ , UngererV, HoldenriederS. Early detection of cancer using circulating tumor DNA: biological, physiological and analytical considerations. Crit. Rev. Clin. Lab. Sci. doi:10.1080/10408363.2019.17009021–17 (2019) ( Epub ahead of print).
  • Khier S , LohanL. Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future Sci. OA4(4), FSO295 (2018).
  • Mouliere F , RobertB, ArnauPeyrotte Eet al. High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE6(9), e23418 (2011).
  • Gall TMH , BeleteS, KhanderiaE, FramptonAE, JiaoLR. Circulating tumor cells and cell-free DNA in pancreatic ductal adenocarcinoma. Am. J. Pathol.189(1), 71–81 (2019).
  • Martuszewski A , PaluszkiewiczP, KrolM, BanasikM, KepinskaM. Donor-derived cell-free DNA in kidney transplantation as a potential rejection biomarker: a systematic literature review. J. Clin. Med.10(2), 193 (2021).
  • Burnham P , KimMS, Agbor-EnohSet al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. Sci. Rep.6, 27859 (2016).
  • Fairbrother G , JohnsonS, MusciTJ, SongK. Clinical experience of noninvasive prenatal testing with cell-free DNA for fetal trisomies 21, 18, and 13, in a general screening population. Prenat. Diagn.33(6), 580–583 (2013).
  • Ryan A , HunkapillerN, BanjevicMet al. Validation of an enhanced version of a single-nucleotide polymorphism-based noninvasive prenatal test for detection of fetal aneuploidies. Fetal Diagn. Ther.40(3), 219–223 (2016).
  • Schwarzenbach H , HoonDS, PantelK. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer11(6), 426–437 (2011).
  • Bloom RD , BrombergJS, PoggioEDet al. Cell-free DNA and active rejection in kidney allografts. J. Am. Soc. Nephrol.28(7), 2221–2232 (2017).
  • Sigdel TK , ArchilaFA, ConstantinTet al. Optimizing detection of kidney transplant injury by assessment of donor-derived cell-free DNA via massively multiplex PCR. J. Clin. Med.8(1), 19 (2018).
  • Stewart CM , KothariPD, MouliereFet al. The value of cell-free DNA for molecular pathology. J. Pathol.244(5), 616–627 (2018).
  • Baxter-Lowe LA , BuschMP. Tracking microchimeric DNA in plasma to diagnose and manage organ transplant rejection. Clin. Chem.52(4), 559–561 (2006).
  • Lee TH , MontalvoL, ChrebtowV, BuschMP. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion41(2), 276–282 (2001).
  • Alidousty C , BrandesD, HeydtCet al. Comparison of blood collection tubes from three different manufacturers for the collection of cell-free DNA for liquid biopsy mutation testing. J. Mol. Diagn.19(5), 801–804 (2017).
  • Meddeb R , PisarevaE, ThierryAR. Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA. Clin. Chem.65(5), 623–633 (2019).
  • Medina Diaz I , NoconA, MehnertDH, FredebohmJ, DiehlF, HoltrupF. Performance of Streck cfDNA blood collection tubes for liquid biopsy testing. PLoS ONE11(11), e0166354 (2016).
  • Zhao Y , LiY, ChenP, LiS, LuoJ, XiaH. Performance comparison of blood collection tubes as liquid biopsy storage system for minimizing cfDNA contamination from genomic DNA. J. Clin. Lab. Anal.33(2), e22670 (2019).
  • North PE , ZieglerE, MahnkeDKet al. Cell-free DNA donor fraction analysis in pediatric and adult heart transplant patients by multiplexed allele-specific quantitative PCR: validation of a rapid and highly sensitive clinical test for stratification of rejection probability. PLoS ONE15(1), e0227385 (2020).
  • Sorber L , ZwaenepoelK, JacobsJet al. Circulating cell-free DNA and RNA analysis as liquid biopsy: optimal centrifugation protocol. Cancers (Basel)11(4), 458 (2019).
  • Sorber L , ZwaenepoelK, DeschoolmeesterVet al. A comparison of cell-free dna isolation kits: isolation and quantification of cell-free DNA in plasma. J. Mol. Diagn.19(1), 162–168 (2017).
  • Markus H , Contente-CuomoT, FarooqMet al. Evaluation of pre-analytical factors affecting plasma DNA analysis. Sci. Rep.8(1), 7375 (2018).
  • Beck J , OellerichM, SchulzUet al. Donor-derived cell-free DNA is a novel universal biomarker for allograft rejection in solid organ transplantation. Transplant. Proc.47(8), 2400–2403 (2015).
  • Shen J , ZhouY, ChenYet al. Dynamics of early post-operative plasma ddcfDNA levels in kidney transplantation: a single-center pilot study. Transpl. Int.32(2), 184–192 (2019).
  • Gielis EM , BeirnaertC, DendoovenAet al. Plasma donor-derived cell-free DNA kinetics after kidney transplantation using a single tube multiplex PCR assay. PLoS ONE13(12), e0208207 (2018).
  • Anand S , Lopez-VerdugoF, Sanchez-GarciaJet al. Longitudinal variance of donor-derived cell-free DNA (dd-cfDNA) in stable kidney transplant (KTx) patients are influenced by donor/recipient variables. Clin. Transplant.35(9), e14395 (2021).
  • De Vlaminck I , ValantineHA, SnyderTMet al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med.6(241), 241ra277 (2014).
  • De Vlaminck I , MartinL, KerteszMet al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc. Natl Acad. Sci. USA112(43), 13336–13341 (2015).
  • Zhao D , ZhouT, LuoYet al. Preliminary clinical experience applying donor-derived cell-free DNA to discern rejection in pediatric liver transplant recipients. Sci. Rep.11(1), 1138 (2021).
  • Zangwill SD , KindelSJ, RagalieWSet al. Early changes in cell-free DNA levels in newly transplanted heart transplant patients. Pediatr. Transplant24(1), e13622 (2020).
  • Beck J , BierauS, BalzerSet al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin. Chem.59(12), 1732–1741 (2013).
  • Beck J , OellerichM, SchutzE. A Universal droplet digital PCR approach for monitoring of graft health after transplantation using a preselected SNP set. Methods Mol. Biol.1768, 335–348 (2018).
  • Dauber EM , KollmannD, KozakowskiNet al. Quantitative PCR of INDELs to measure donor-derived cell-free DNA-a potential method to detect acute rejection in kidney transplantation: a pilot study. Transpl. Int.33(3), 298–309 (2020).
  • Garcia Moreira V , PrietoGarcia B, BaltarMartin JM, OrtegaSuarez F, AlvarezFV. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin. Chem.55(11), 1958–1966 (2009).
  • Huggett JF , CowenS, FoyCA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem.61(1), 79–88 (2015).
  • Jylhava J , KotipeltoT, RaitalaA, JylhaM, HervonenA, HurmeM. Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: the Vitality 90+ study. Mech. Ageing Dev.132(1–2), 20–26 (2011).
  • Sureshkumar KK , AramadaHR, ChopraB. Impact of body mass index and recipient age on baseline donor-derived cell free DNA (dd-cfDNA) in kidney transplant recipients. Clin. Transplant34(12), e14101 (2020).
  • Haller N , TugS, BreitbachS, JorgensenA, SimonP. Increases in circulating cell-free DNA during aerobic running depend on intensity and duration. Int. J. Sports Physiol. Perform12(4), 455–462 (2017).
  • Madsen AT , HojbjergJA, SorensenBS, Winther-LarsenA. Day-to-day and within-day biological variation of cell-free DNA. EBioMedicine49, 284–290 (2019).
  • Hou YQ , LiangDY, LouXL, ZhangM, ZhangZH, ZhangLR. Branched DNA-based Alu quantitative assay for cell-free plasma DNA levels in patients with sepsis or systemic inflammatory response syndrome. J. Crit. Care31(1), 90–95 (2016).
  • Nawroz H , KochW, AnkerP, StrounM, SidranskyD. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat. Med.2(9), 1035–1037 (1996).
  • Yamauchi M , UrabeY, OnoA, MikiD, OchiH, ChayamaK. Serial profiling of circulating tumor DNA for optimization of anti-VEGF chemotherapy in metastatic colorectal cancer patients. Int. J. Cancer142(7), 1418–1426 (2018).
  • Atamaniuk J , RuzickaK, StuhlmeierKM, KarimiA, EignerM, MuellerMM. Cell-free plasma DNA: a marker for apoptosis during hemodialysis. Clin. Chem.52(3), 523–526 (2006).
  • Xie J , YangJ, HuP. Correlations of circulating cell-free DNA with clinical manifestations in acute myocardial infarction. Am. J. Med. Sci.356(2), 121–129 (2018).
  • Snyder TM , KhushKK, ValantineHA, QuakeSR. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl Acad. Sci. USA108(15), 6229–6234 (2011).
  • Lui YY , WooKS, WangAYet al. Origin of plasma cell-free DNA after solid organ transplantation. Clin. Chem.49(3), 495–496 (2003).
  • Macher HC , Suarez-ArtachoG, GuerreroJMet al. Monitoring of transplanted liver health by quantification of organ-specific genomic marker in circulating DNA from receptor. PLoS ONE9(12), e113987 (2014).
  • Zou J , DuffyB, SladeMet al. Rapid detection of donor cell free DNA in lung transplant recipients with rejections using donor-recipient HLA mismatch. Hum. Immunol.78(4), 342–349 (2017).
  • Gadi VK , NelsonJL, BoespflugND, GuthrieKA, KuhrCS. Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection. Clin. Chem.52(3), 379–382 (2006).
  • Genomes Project C , AutonA, BrooksLDet al. A global reference for human genetic variation. Nature526(7571), 68–74 (2015).
  • Sigdel TK , VitaloneMJ, TranTQet al. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation96(1), 97–101 (2013).
  • Hidestrand M , Tomita-MitchellA, HidestrandPMet al. Highly sensitive noninvasive cardiac transplant rejection monitoring using targeted quantification of donor-specific cell-free deoxyribonucleic acid. J. Am. Coll. Cardiol.63(12), 1224–1226 (2014).
  • Dengu F . Next-generation sequencing methods to detect donor-derived cell-free DNA after transplantation. Transplant Rev (Orlando)34(3), 100542 (2020).
  • Huang E , SethiS, PengAet al. Early clinical experience using donor-derived cell-free DNA to detect rejection in kidney transplant recipients. Am. J. Transplant19(6), 1663–1670 (2019).
  • Khush KK , PatelJ, PinneySet al. Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: a prospective multicenter study. Am. J. Transplant19(10), 2889–2899 (2019).
  • Khush KK , DeVlaminck I, LuikartH, RossDJ, NicollsMR. Donor-derived, cell-free DNA levels by next-generation targeted sequencing are elevated in allograft rejection after lung transplantation. ERJ Open Res.7(1), 00462–2020 (2021).
  • Puliyanda DP , SwinfordR, PizzoH, GarrisonJ, DeGolovine AM, JordanSC. Donor-derived cell-free DNA (dd-cfDNA) for detection of allograft rejection in pediatric kidney transplants. Pediatr. Transplant25(2), e13850 (2021).
  • Sayah D , WeigtSS, RamseyA, ArdehaliA, GoldenJ, RossDJ. Plasma donor-derived cell-free DNA levels are increased during acute cellular rejection after lung transplant: pilot data. Transplant Direct6(10), e608 (2020).
  • Levine DJ , RossDJ, SakoE. Single center “snapshot” experience with donor-derived cell-free DNA after lung transplantation. Biomark Insights15, 1177271920958704 (2020).
  • Dar P , CurnowKJ, GrossSJet al. Clinical experience and follow-up with large scale single-nucleotide polymorphism-based noninvasive prenatal aneuploidy testing. Am. J. Obstet. Gynecol.211(5), 527 e521–527 e517 (2014).
  • Altug Y , LiangN, RamRet al. Analytical validation of a single-nucleotide polymorphism-based donor-derived cell-free DNA assay for detecting rejection in kidney transplant patients. Transplantation103(12), 2657–2665 (2019).
  • Puttarajappa CM , MehtaRB, RobertsMS, SmithKJ, HariharanS. Economic analysis of screening for subclinical rejection in kidney transplantation using protocol biopsies and noninvasive biomarkers. Am. J. Transplant21(1), 186–197 (2021).
  • Puttarajappa CM , MehtaRB, HariharanS. Author response to comments on economic analysis of subclinical rejection screening in kidney transplantation. Am. J. Transplant21(3), 1348–1349 (2021).
  • Oellerich M , SherwoodK, KeownPet al. Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nat. Rev. Nephrol.17(9), 591–603 (2021).
  • Gielis EM , LedeganckKJ, DendoovenAet al. The use of plasma donor-derived, cell-free DNA to monitor acute rejection after kidney transplantation. Nephrol. Dial. Transplant.35(4), 714–721 (2020).
  • Zhang H , ZhengC, LiXet al. Diagnostic performance of donor-derived plasma cell-free DNA fraction for antibody-mediated rejection in post-renal transplant recipients: a prospective observational study. Front Immunol.11, 342 (2020).
  • Oellerich M , ChristensonRH, BeckJet al. Donor-derived cell-free DNA testing in solid organ transplantation: a value proposition. J. Appl. Lab Med.5(5), 993–1004 (2020).
  • Ragalie WS , StammK, MahnkeDet al. Noninvasive assay for donor fraction of cell-free DNA in pediatric heart transplant recipients. J. Am. Coll. Cardiol.71(25), 2982–2983 (2018).
  • Richmond ME , ZangwillSD, KindelSJet al. Donor fraction cell-free DNA and rejection in adult and pediatric heart transplantation. J. Heart Lung Transplant.39(5), 454–463 (2020).
  • Schutz E , FischerA, BeckJet al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study. PLoS Med.14(4), e1002286 (2017).
  • Goh SK , DoH, TestroAet al. The measurement of donor-specific cell-free DNA identifies recipients with biopsy-proven acute rejection requiring treatment after liver transplantation. Transplant Direct5(7), e462 (2019).
  • Knuttgen F , BeckJ, DittrichMet al. Graft-derived cell-free DNA as a noninvasive biomarker of cardiac allograft rejection: a cohort study on clinical validity and confounding factors. Transplantation doi:10.1097/TP.0000000000003725 (2021) ( Epub ahead of print).
  • Dueck ME , LinR, ZayacAet al. Precision cancer monitoring using a novel, fully integrated, microfluidic array partitioning digital PCR platform. Sci. Rep.9(1), 19606 (2019).
  • Quan PL , SauzadeM, BrouzesE. dPCR: A Technology Review. Sensors (Basel)18(4), 1271 (2018).
  • Whitlam JB , LingL, SkeneAet al. Diagnostic application of kidney allograft-derived absolute cell-free DNA levels during transplant dysfunction. Am. J. Transplant19(4), 1037–1049 (2019).
  • Oellerich M , ShipkovaM, AsendorfTet al. Absolute quantification of donor-derived cell-free DNA as a marker of rejection and graft injury in kidney transplantation: results from a prospective observational study. Am. J. Transplant19(11), 3087–3099 (2019).
  • Xiao H , GaoF, PangQet al. Diagnostic accuracy of donor-derived cell-free DNA in renal-allograft rejection: a meta-analysis. Transplantation105(6), 1303–1310 (2021).
  • Wijtvliet V , PlaekeP, AbramsSet al. Donor-derived cell-free DNA as a biomarker for rejection after kidney transplantation: a systematic review and meta-analysis. Transpl. Int.33(12), 1626–1642 (2020).
  • Jordan SC , BunnapradistS, BrombergJSet al. Donor-derived cell-free DNA identifies antibody-mediated rejection in donor specific antibody positive kidney transplant recipients. Transplant Direct4(9), e379 (2018).
  • Vallabhajosyula P , KorutlaL, HabertheuerAet al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J. Clin. Invest.127(4), 1375–1391 (2017).