176
Views
1
CrossRef citations to date
0
Altmetric
Theme: Biomarkers: paving the way for better stratification in heart failure - Review

Novel Biomarkers in Heart Failure: An Overview

, , &
Pages 453-463 | Published online: 08 Oct 2009

Bibliography

  • Mosterd A , HoesAW: Clinical epidemiology of heart failure.Heart93, 1137–1146 (2007).
  • Gardner RS , ChongKS, McDonaghTA: B-type natriuretic peptides in heart failure.Biomark. Med.1(2), 243–250 (2007).
  • Gegenhuber A , StruckJ, PoelzWet al. : Midregional pro-A-type natriuretic peptide measurements for diagnosis of acute destabilized heart failure in short-of-breath patients: comparison with B-type natriuretic peptide (BNP) and amino-terminal proBNP.Clin. Chem.52(5), 827–831 (2006).
  • Elmas E , BrueckmannM, LangSet al. : Midregional pro-atrial natriuretic peptide is a useful indicator for the detection of impaired left ventricular function in patients with coronary artery disease.Int. J. Cardiol.128(2), 244–249 (2008).
  • Gegenhuber A , StruckJ, DieplingerBet al. : Comparative evaluation of B-type natriuretic peptide, mid-regional pro-A-type natriuretic peptide, mid-regional pro-adrenomedullin, and copeptin to predict 1-year mortality in patients with acute destabilized heart failure.J. Card. Fail.13(1), 42–49 (2007).
  • von Haehling S , JankowskaEA, MorgenthalerNGet al. : Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure.J. Am. Coll. Cardiol.50(20), 1973–1980 (2007).
  • Moertl D , BergerR, StruckJet al. : Comparison of midregional pro-ANP and B-type natriuretic peptides in chronic heart failure.J. Am. Coll. Cardiol.53(19), 1783–1790 (2009).
  • Bunton DC , PetrieMC, HillierC, JohnstonF, McMurrayJJ: The clinical relevance of adrenomedullin: a promising profile?Pharmacol. Ther.103(3), 179–201 (2004).
  • Pousset F , MassonF, ChavirovskaiaOet al. : Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure.Eur. Heart J.21(12), 1009–1014 (2000).
  • Morgenthaler NG , StruckJ, AlonsoC, BergmannA: Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay.Clin. Chem.51(10), 1823–1829 (2005).
  • Elmas E , LangS, DempfleCEet al. : Diagnostic performance of mid-regional pro-adrenomedullin as an analyte for the exclusion of left ventricular dysfunction.Int. J. Cardiol.128(1), 107–111 (2008).
  • Khan SQ , O‘BrienRJ, StruckJet al. : Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study.J. Am. Coll. Cardiol.49(14), 1525–1532 (2007).
  • Adlbrecht C , HülsmannM, StrunkGet al. : Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients.Eur. J Heart Fail.11(4), 361–366 (2009).
  • Finley JJ 4th, Konstam MA, Udelson JE: Arginine vasopressin antagonists for the treatment of heart failure and hyponatremia. Circulation118(4), 410–421 (2008).
  • Goldsmith SR , FrancisGS, CowleyAW Jr, Levine TB, Cohn JN: Increased plasma arginine vasopressin levels in patients with congestive heart failure. J. Am. Coll. Cardiol.1(6), 1385–1390 (1983).
  • Morgenthaler NG , StruckJ, AlonsoC, BergmannA: Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin.Clin. Chem.52(1), 112–119 (2006).
  • Khan SQ , DhillonOS, O‘BrienRJet al. : C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study.Circulation115(16), 2103–2110 (2007).
  • Kelly D , SquireIB, KhanSQet al. : C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remodeling, and clinical heart failure in survivors of myocardial infarction.J. Card. Fail.14(9), 739–745 (2008).
  • Voors AA , von HaehlingS, AnkerSDet al.: C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study.Eur. Heart J.30(10), 1187–1194 (2009).
  • Stoiser B , MörtlD, HülsmannMet al. : Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure.Eur. J. Clin. Invest.36(11), 771–778 (2006).
  • Neuhold S , HuelsmannM, StrunkGet al. : Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease.J. Am. Coll. Cardiol.52(4), 266–272 (2008).
  • Helle KB : The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects.Biol. Rev. Camb. Philos. Soc.79(4), 769–794 (2004).
  • Pieroni M , CortiA, TotaBet al. : Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function.Eur. Heart J.28(9), 1117–1127 (2007).
  • Taupenot L , HarperKL, O‘ConnorDT: The chromogranin-secretogranin family.N. Engl. J. Med.348(12), 1134–1149 (2003).
  • Aardal S , HelleKB, ElsayedS, ReedRK, Serck-HanssenG: Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments.J. Neuroendocrinol.5(4), 405–412 (1993).
  • Imbrogno S , AngeloneT, CortiA, AdamoC, HelleKB, TotaB: Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action.Gen. Comp. Endocrinol.139(1), 20–28 (2004).
  • Corti A , MannarinoC, MazzaR, AngeloneT, LonghiR, TotaB: Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7–57 peptide act as cardiostatins on the isolated working frog heart.Gen. Comp. Endocrinol.136(2), 217–224 (2004).
  • Tota B , MazzaR, AngeloneTet al. : Peptides from the N-terminal domain of chromogranin A (vasostatins) exert negative inotropic effects in the isolated frog heart.Regul. Pept.114(2–3), 123–130 (2003).
  • Cerra MC , De Iuri L, Angelone T, Corti A, Tota B: Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res. Cardiol.101(1), 43–52 (2006).
  • Angelone T , QuintieriAM, BrarBKet al. : The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism.Endocrinology149(10), 4780–4793 (2008).
  • Mazza R , GattusoA, MannarinoCet al. : Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart.Am. J Physiol. Heart Circ. Physiol.295(1), H113–H122 (2008).
  • Schulze PC : Chromogranin A: friend or foe of the failing myocardium?Eur. Heart J.28(9), 1052–1053 (2007).
  • Ratti S , CurnisF, LonghiRet al. : Structure-activity relationships of chromogranin A in cell adhesion. Identification of an adhesion site for fibroblasts and smooth muscle cells.J. Biol. Chem.275(38), 29257–29263 (2000).
  • Soriano JV , PepperMS, TaupenotL, BaderMF, OrciL, MontesanoR: Chromogranin A alters ductal morphogenesis and increases deposition of basement membrane components by mammary epithelial cells in vitro.Biochem. Biophys. Res. Commun.259(3), 563–568 (1999).
  • Ceconi C , FerrariR, BachettiTet al. : Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality.Eur. Heart J.23(12), 967–974 (2002).
  • Dieplinger B , GegenhuberA, StruckJet al. : Chromogranin A and C-terminal endothelin-1 precursor fragment add independent prognostic information to amino-terminal proBNP in patients with acute destabilized heart failure.Clin. Chim. Acta400(1–2), 91–96 (2009).
  • Boriani G , RegoliF, SaporitoDet al. : Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: time courses and prediction of response.Peptides27(7), 1776–1786 (2006).
  • Wohlschlaeger J , von WinterfeldM, MiltingHet al.: Decreased myocardial chromogranin an expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading. J. Heart Lung Transplant. 27(4), 442–449 (2008).
  • Kleinz MJ , DavenportAP: Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells.Regul. Pept.118, 119–125 (2004).
  • O‘Dowd BF , HeiberM, ChanAet al. : A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11.Gene136(1–2), 355–360 (1993).
  • Lee DK , ChengR, NguyenTet al. : Characterization of apelin, the ligand for the APJ receptor.J. Neurochem.74(1), 34–41(2000).
  • Tatemoto K , TakayamaK, ZouMXet al. : The novel peptide apelin lowers blood pressure via a nitric oxide dependent mechanism.Regul. Pept.99, 87–92 (2001).
  • Jia YX , LuZF, ZhangJet al. : Apelin activates l-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas.Peptides28, 2023–2029 (2007).
  • Japp AG , CrudenNL, AmerDAet al. : Vascular effects of apelin in vivo in man.J. Am. Coll. Cardiol.52(11), 908–913 (2008).
  • De Mota N , Reaux-Le GoazigoA, El MessariSet al.: Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release.Proc. Natl Acad. Sci. USA101(28), 10464–10469 (2004).
  • Hus-Citharel A , BoubyN, FrugièreA, BodineauL, GascJM, Llorens-CortesC: Effect of apelin on glomerular hemodynamic function in the rat kidney.Kidney Int.74(4), 486–494 (2008).
  • Ernst KV , AshleyEA, CharoDet al. : Apelin regulates cardiac contractility and rescues neurohormonal heart failure.Circulation114 (2006) (Abstract II_66).
  • Szokodi I , TaviP, FoldesGet al. : Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates contractility.Circ. Res.91, 434–400 (2002).
  • Farkasfalvi K , StaggMA, CoppenSRet al. : Direct effects of apelin on cardiomyocyte contractility and electrophysiology.Biochem. Biophys. Res. Comm.357, 889–895 (2007).
  • Jia YX , PanCS, ZhangJet al. : Apelin protects myocardial injury induced by isoproterenol in rats.Regul. Pept.133(1–3), 147–154 (2006).
  • Berry MF , PirolliTJ, JayasankarVet al. : Apelin has in vivo inotropic effects on normal and failing hearts.Circulation110(Suppl. 11), 187–193 (2004).
  • Ashley EA , PowersJ, ChenMet al. : The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo.Cardiovasc. Res.65(1), 73–82 (2005).
  • Kuba K , ZhangL, ImaiYet al. : Impaired heart contractility in apelin gene-deficient mice associated with aging and pressure overload.Circ. Res.101(4), E32–E42 (2007).
  • Weir RA , ChongKS, DalzellJRet al. : Plasma apelin concentration is depressed following acute myocardial infarction in man.Eur. J. Heart Fail.11(6), 551–558 (2009).
  • van Kimmenade RR , JanuzziJL Jr, EllinorPTet al.: Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure.J. Am. Coll. Cardiol.48(6), 1217–1224 (2006).
  • Chong KS , GardnerRS, MortonJJ, AshleyEA, McDonaghTA: Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure.Eur. J. Heart Fail.8(4), 355–360 (2006).
  • Chen MM , AshleyEA, DengDXet al. : Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction.Circulation108(12), 1432–1439 (2003).
  • Francia P , SalvatiA, BallaCet al. : Cardiac resynchronization therapy increases plasma levels of the endogenous inotrope apelin.Eur. J. Heart Fail.9(3), 306–309 (2007).
  • Goetze JP , ReCHFeldJF, CarlsenJet al. : Apelin: a new plasma marker of cardiopulmonary disease.Regul. Pept.133(1–3), 134–138 (2006).
  • Földes G , HorkayF, SzokodiIet al. : Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure.Biochem. Biophys. Res. Commun.308(3), 480–485 (2003).
  • Mullens W , BartunekJ, Wilson TangWHet al.: Early and late effects of cardiac resynchronization therapy on force-frequency relation and contractility regulating gene expression in heart failure patients.Heart Rhythm5(1), 52–59 (2008).
  • Burnett JC Jr: Urocortin, advancing the neurohumoral hypothesis of heart failure. Circulation112(23), 3544–3546 (2005).
  • Parkes DG , VaughanJ, RivierJ, ValeW, MayCN: Cardiac inotropic actions of urocortin in conscious sheep.Am. J. Physiol.272(5 Pt 2), H2115–H2122 (1997).
  • Chen ZW , HuangY, YangQ, LiX, WeiW, HeGW: Urocortin-induced relaxation in the human internal mammary artery.Cardiovasc. Res.65(4), 913–920 (2005).
  • Sanz E , MongeL, FernándezNet al. : Relaxation by urocortin of human saphenous veins.Br. J. Pharmacol.136(1), 90–94 (2002).
  • Nishikimi T , MiyataA, HorioTet al. : Urocortin, a member of the corticotropin-releasing factor family, in normal and diseased heart.Am. J Physiol. Heart Circ. Physiol.279(6), H3031–H3039 (2000).
  • Ikeda K , TojoK, SatoSet al. : Urocortin, a newly identified corticotropin-releasing factor-related mammalian peptide, stimulates atrial natriuretic peptide and brain natriuretic peptide secretions from neonatal rat cardiomyocytes.Biochem. Biophys. Res. Commun.250(2), 298–304 (1998).
  • Rademaker MT , CharlesCJ, EspinerEA, FramptonCM, LainchburyJG, RichardsAM: Four-day urocortin-I administration has sustained beneficial haemodynamic, hormonal, and renal effects in experimental heart failure.Eur. Heart J.26(19), 2055–2062 (2005).
  • Rademaker MT , CameronVA, CharlesCJ, RichardsAM: Integrated hemodynamic, hormonal, and renal actions of urocortin 2 in normal and paced sheep: beneficial effects in heart failure.Circulation112(23), 3624–3632 (2005).
  • Rademaker MT , CameronVA, CharlesCJ, RichardsAM: Urocortin 3: haemodynamic, hormonal, and renal effects in experimental heart failure.Eur. Heart J.27(17), 2088–2098 (2006).
  • Bale TL , HoshijimaM, GuYet al. : The cardiovascular physiologic actions of urocortin II: acute effects in murine heart failure.Proc. Natl Acad. Sci. USA101(10), 3697–3702 (2004).
  • Rademaker MT , CharlesCJ, RichardsAM: Urocortin 1 administration from onset of rapid left ventricular pacing represses progression to overt heart failure.Am. J. Physiol. Heart Circ. Physiol.293(3), H1536–H1544 (2007).
  • Ng LL , LokeIW, O‘BrienRJ, SquireIB, DaviesJE: Plasma urocortin in human systolic heart failure.Clin. Sci.106(4), 383–388 (2004).
  • Crane FL , HatefiY, LesterRL, WidmerC: Isolation of a quinone from beef heart mitochondria.Biochim. Biophys. Acta25(1), 220–221 (1957).
  • Folkers K , VadhanavikitS, MortensenSA: Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10.Proc. Natl Acad. Sci. USA82(3), 901–904 (1985).
  • Molyneux SL , FlorkowskiCM, GeorgePMet al. : Coenzyme Q10: an independent predictor of mortality in chronic heart failure.J. Am. Coll. Cardiol.52(18), 1435–1441 (2008).
  • Sander S , ColemanCI, PatelAA, KlugerJ, WhiteCM: The impact of coenzyme Q10 on systolic function in patients with chronic heart failure.J. Card. Fail.12(6), 464–472 (2006).
  • Mortensen SA : Overview on coenzyme Q10 as adjunctive therapy in chronic heart failure. Rationale, design and end-points of “Q-symbio” – a multinational trial.Biofactors18(1–4), 79–89 (2003).
  • Hopkins TA , OuchiN, ShibataR, WalshK: Adiponectin actions in the cardiovascular system.Cardiovasc. Res.74(1), 11–18 (2007).
  • Fujioka D , KawabataK, SaitoYet al. : Role of adiponectin receptors in endothelin-induced cellular hypertrophy in cultured cardiomyocytes and their expression in infarcted heart.Am. J Physiol. Heart Circ. Physiol.290(6), H2409–H2416 (2006).
  • Dieplinger B , GegenhuberA, PoelzW, HaltmayerM, MuellerT: Prognostic value of increased adiponectin plasma concentrations in patients with acute destabilized heart failure.Clin. Biochem.42(10–11), 1190–1193(2009).
  • Tanaka T , TsutamotoT, SakaiHet al. : Effect of atrial natriuretic peptide on adiponectin in patients with heart failure.Eur. J. Heart Fail.10(4), 360–366 (2008).
  • Kistorp C , FaberJ, GalatiusSet al. : Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure.Circulation112(12), 1756–1762 (2005).
  • McEntegart MB , AwedeB, PetrieMCet al. : Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide.Eur. Heart J.28(7), 829–835 (2007).
  • Schaap FG , van der Vusse GJ, Glatz JF: Fatty acid-binding proteins in the heart. Mol. Cell. Biochem.180(1–2), 43–51 (1998).
  • Setsuta K , SeinoY, OgawaT, AraoM, MiyatakeY, TakanoT: Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure.Am. J. Med.113(9), 717–722 (2002).
  • Niizeki T , TakeishiY, ArimotoTet al. : Serum heart-type fatty acid binding protein predicts cardiac events in elderly patients with chronic heart failure.J. Cardiol.46(1), 9–15 (2005).
  • Komamura K , SasakiT, HanataniAet al. : Heart-type fatty acid binding protein is a novel prognostic marker in patients with non-ischaemic dilated cardiomyopathy.Heart92(5), 615–618 (2006).
  • Niizeki T , TakeishiY, ArimotoTet al. : Combination of heart-type fatty acid binding protein and brain natriuretic peptide can reliably risk stratify patients hospitalized for chronic heart failure.Circ. J.69(8), 922–927 (2005).
  • Niizeki T , TakeishiY, ArimotoTet al. : Heart-type fatty acid-binding protein is more sensitive than troponin T to detect the ongoing myocardial damage in chronic heart failure patients.J. Card. Fail.13(2), 120–127 (2007).
  • Niizeki T , TakeishiY, ArimotoTet al. : Persistently increased serum concentration of heart-type fatty acid-binding protein predicts adverse clinical outcomes in patients with chronic heart failure.Circ. J.72(1), 109–114 (2008).
  • Hansen MS , StantonEB, GawadYet al. : Relation of circulating cardiac myosin light chain 1 isoform in stable severe congestive heart failure to survival and treatment with flosequinan.Am. J. Cardiol.90(9), 969–973 (2002).
  • Sugiura T , TakaseH, ToriyamaT, GotoT, UedaR, DohiY: Circulating levels of myocardial proteins predict future deterioration of congestive heart failure.J. Card. Fail.11(7), 504–509 (2005).
  • Mann DL : Inflammatory mediators and the failing heart: past, present, and the foreseeable future.Circ. Res.91(11), 988–998 (2002).
  • Yanagisawa K , TsukamotoT, TakagiT, TominagaS: Murine ST2 gene is a member of the primary response gene family induced by growth factors.FEBS Lett.302(1), 51–53 (1992).
  • Townsend MJ , FallonPG, MatthewsDJ, JolinHE, McKenzieAN: T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses.J. Exp. Med.191(6), 1069–1076 (2000).
  • Weinberg EO , ShimpoM, De KeulenaerGWet al.: Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction.Circulation106(23), 2961–2966 (2002).
  • Schmitz J , OwyangA, OldhamEet al. : IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.Immunity.23(5), 479–490 (2005).
  • Sanada S , HakunoD, HigginsLJ, SchreiterER, McKenzieAN, LeeRT: IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system.J. Clin. Invest.117(6), 1538–1549 (2007).
  • Sabatine MS , MorrowDA, HigginsLJet al. : Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction.Circulation117(15), 1936–1944 (2008).
  • Boisot S , BeedeJ, IsaksonSet al. : Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure.J. Card. Fail.14(9), 732–738 (2008).
  • Rehman SU , MuellerT, JanuzziJL Jr: Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol.52(18), 1458–1465 (2008).
  • Januzzi JL Jr, PeacockWF, MaiselASet al.: Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study.J. Am. Coll. Cardiol.50(7), 607–613 (2007).
  • Mueller T , DieplingerB, GegenhuberA, PoelzW, PacherR, HaltmayerM: Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure.Clin. Chem.54(4), 752–756 (2008).
  • Weinberg EO , ShimpoM, HurwitzS, TominagaS, RouleauJL, LeeRT: Identification of serum soluble ST2 receptor as a novel heart failure biomarker.Circulation107(5), 721–726 (2003).
  • Kempf T , EdenM, StrelauJet al. : The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury.Circ. Res.98(3), 351–360 (2006).
  • Xu J , KimballTR, LorenzJNet al. : GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation.Circ. Res.98(3), 342–350 (2006).
  • Kempf T , von HaehlingS, PeterTet al.: Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure.J. Am. Coll. Cardiol.50(11), 1054–1060 (2007).
  • Garlanda C , BottazziB, BastoneA, MantovaniA: Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition and female fertility.Annu. Rev. Immunol.23, 337–366 (2005).
  • Latini R , MaggioniAP, PeriGet al. : Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction.Circulation110(16), 2349–2354 (2004).
  • Suzuki S , TakeishiY, NiizekiTet al. : Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure.Am. Heart J.155(1), 75–81 (2008).
  • Kotooka N , InoueT, AokiS, AnanM, KomodaH, NodeK: Prognostic value of pentraxin 3 in patients with chronic heart failure.Int. J. Cardiol.130(1), 19–22 (2008).
  • Xie Z , PimentalDR, LohanSet al. : Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species.J. Cell. Physiol.188, 132–138 (2001).
  • Singh K , SirokmanG, CommunalCet al. : Myocardial osteopontin expression coincides with the development of heart failure.Hypertension33(2), 663–670 (1999).
  • Xie Z , SinghM, SinghK: Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice.Hypertension44(6), 826–831 (2004).
  • Kramer F , SandnerP, KleinM, KrahnT: Plasma concentrations of matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1 and osteopontin reflect severity of heart failure in DOCA-salt hypertensive rat.Biomarkers13(3), 270–281 (2008).
  • Stawowy P , BlaschkeF, PfautschPet al. : Increased myocardial expression of osteopontin in patients with advanced heart failure.Eur. J. Heart Fail.4(2), 139–146 (2002).
  • Satoh M , NakamuraM, AkatsuT, ShimodaY, SegawaI, HiramoriK: Myocardial osteopontin expression is associated with collagen fibrillogenesis in human dilated cardiomyopathy.Eur. J. Heart Fail.7(5), 755–762 (2005).
  • Rosenberg M , ZugckC, NellesMet al. : Osteopontin, a new prognostic biomarker in patients with chronic heart failure.Circ. Heart Fail.15(4), 43–49 (2008).
  • Marathe S , SchisselSL, YellinMJet al. : Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling.J. Biol. Chem.273(7), 4081–4088 (1998).
  • Hernandez OM , DischerDJ, BishopricNH, WebsterKA: Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes.Circ. Res.86(2), 198–204 (2000).
  • Oral H , DornGW 2nd, Mann DL: Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-α in the adult mammalian cardiac myocyte. J. Biol. Chem.272(8), 4836–4842 (1997).
  • Doehner W , BunckAC, RauchhausMet al. : Secretory sphingomyelinase is upregulated in chronic heart failure: a second messenger system of immune activation relates to body composition, muscular functional capacity, and peripheral blood flow.Eur. Heart J.28(7), 821–828 (2007).
  • Pennica D , SwansonTA, ShawKJet al. : Human cardiotrophin-1: protein and gene structure, biological and binding activities, and chromosomal localization.Cytokine8(3), 183–189 (1996).
  • Pemberton CJ , RaudseppSD, YandleTG, CameronVA, RichardsAM: Plasma cardiotrophin-1 is elevated in human hypertension and stimulated by ventricular stretch.Cardiovasc. Res.68(1), 109–117 (2005).
  • Zolk O , EngmannS, MünzelF, KrajcikR: Chronic cardiotrophin-1 stimulation impairs contractile function in reconstituted heart tissue.Am. J. Physiol. Endocrinol. Metab.288(6), E1214–E1221 (2005).
  • Jin H , YangR, KellerGAet al. : In vivo effects of cardiotrophin-1.Cytokine8(12), 920–926 (1996).
  • Tsutamoto T , WadaA, MaedaKet al. : Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy.J. Am. Coll. Cardiol.38(5), 1485–1490 (2001).
  • Tsutamoto T , AsaiS, TanakaTet al. : Plasma level of cardiotrophin-1 as a prognostic predictor in patients with chronic heart failure.Eur. J. Heart Fail.9(10), 1032–1037 (2007).
  • Li Y , Komai-KomaM, GilchristDSet al. : Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation.J. Immunol.181(4), 2781–2789 (2008).
  • Sharma UC , PokharelS, van BrakelTJet al.: Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction.Circulation110(19), 3121–3128 (2004).
  • Sharma U , RhalebNE, PokharelSet al. : Novel anti-inflammatory mechanisms of N-acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage.Am. J Physiol. Heart Circ. Physiol.294(3), H1226–H1232 (2008).
  • Milting H , EllinghausP, SeewaldMet al. : Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices.J. Heart Lung Transplant.27(6), 589–596 (2008).
  • Abrahamson M , OlafssonI, PalsdottirAet al. : Structure and expression of the human cystatin C gene.Biochem. J.268(2), 287–294 (1990).
  • Lassus J , HarjolaVP, SundRet al. : Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP.Eur. Heart J.28(15), 1841–1847 (2007).
  • Ix JH , ShlipakMG, ChertowGM, WhooleyMA: Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study.Circulation115(2), 173–179 (2007).
  • Arimoto T , TakeishiY, NiizekiTet al. : Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure.J. Card. Fail.11(8), 595–601 (2005).
  • Shlipak MG , KatzR, FriedLFet al. : Cystatin-C and mortality in elderly persons with heart failure.J. Am. Coll. Cardiol.45(2), 268–271 (2005).
  • De Pasquale CG : Surfactant protein-B in chronic heart failure: an insight to the alveolocapillary barrier.Rev. Esp. Cardiol.62(2), 117–119 (2009).
  • De Pasquale CG , ArnoldaLF, DoyleIR, GrantRL, AylwardPE, BerstenAD: Prolonged alveolocapillary barrier damage after acute cardiogenic pulmonary edema.Crit. Care Med.31(4), 1060–1067 (2003).
  • De Pasquale CG , ArnoldaLF, DoyleIR, AylwardPE, ChewDP, BerstenAD: Plasma surfactant protein-B: a novel biomarker in chronic heart failure.Circulation110(9), 1091–1096 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.