243
Views
0
CrossRef citations to date
0
Altmetric
Review

Mirna Panels as Biomarkers for Bladder Cancer

, &
Pages 733-746 | Published online: 15 Aug 2014

References

  • Siegel R , NaishadhamD, JemalA. Cancer statistics, 2013.CA Cancer J. Clin.63, 11 – 30 (2013).
  • Babjuk M , OosterlinckW, SylvesterRet al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Actas Urol. Esp. 36, 389 – 402 (2012).
  • van Rhijn BW , BurgerM, LotanYet al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur. Urol. 56, 430 – 442 (2009).
  • Sobin LH , GospodarowiczMK, WittekindC. TNM Classification of Malignant Tumours, 7th Edition.Wiley-Blackwell, NY, USA (2009).
  • Pandith AA , ShahZA, SiddiqiMA. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer.Urol. Oncol.31, 398 – 406 (2013).
  • Wu XR . Biology of urothelial tumorigenesis: insights from genetically engineered mice.Cancer Metastasis Rev.28, 281 – 290 (2009).
  • Lokeshwar VB , HabuchiT, GrossmanHBet al. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology 66, 35 – 63 (2005).
  • Kim WJ , BaeSC. Molecular biomarkers in urothelial bladder cancer.Cancer Sci.99, 646 – 652 (2008).
  • Lotan Y , ShariatSF, Schmitz-DragerBJet al. Considerations on implementing diagnostic markers into clinical decision making in bladder cancer. Urol Oncol. 28, 441 – 448 (2010).
  • Soletormos G , DuffyMJ, HayesDFet al. Design of tumor biomarker-monitoring trials: a proposal by the European Group on Tumor Markers. Clin. Chem. 59, 52 – 59 (2013).
  • Kutter C , SvobodaP. miRNA, siRNA, piRNA: knowns of the unknown.RNA Biol.5, 181 – 188 (2008).
  • Lee RC , FeinbaumRL, AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell75, 843 – 854 (1993).
  • Gregory RI , YanKP, AmuthanGet al. The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235 – 240 (2004).
  • Tetreault N , De GuireV. miRNAs: their discovery, biogenesis and mechanism of action.Clin. Biochem.46, 842 – 845 (2013).
  • Cheloufi S , Dos SantosCO, ChongMMet al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584 – 589 (2010).
  • Schaefer A , JungM, KristiansenGet al.. MicroRNAsand cancer: current state and future perspectives in urologic oncology.Urol. Oncol.28 (1), 4 – 13 (2010).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function.Cell116, 281 – 297 (2004).
  • miRBase: the microRNA database. www.mirbase.org
  • Calin GA , CroceCM. MicroRNA signatures in human cancers.Nat. Rev. Cancer6, 857 – 866 (2006).
  • Fevrier B , RaposoG. Exosomes: endosomal-derived vesicles shipping extracellular messages.Curr. Opin. Cell Biol.16, 415 – 421 (2004).
  • Heijnen HF , SchielAE, FijnheerRet al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94, 3791 – 3799 (1999).
  • Hunter MP , IsmailN, ZhangXet al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694 (2008).
  • Arroyo JD , ChevilletJR, KrohEMet al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003 – 5008 (2011).
  • Turchinovich A , WeizL, LangheinzAet al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223 – 7233 (2011).
  • Jung M , SchaeferA, SteinerIet al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin. Chem. 56, 998 – 1006 (2010).
  • Mitchell PS , ParkinRK, KrohEMet al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513 – 10518 (2008).
  • Liu CG , CalinGA, MeloonBet al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA 101, 9740 – 9744 (2004).
  • Lu J , GetzG, MiskaEAet al. MicroRNA expression profiles classify human cancers. Nature 435, 834 – 838 (2005).
  • Schmittgen TD , JiangJ, LiuQet al. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004).
  • Chen C , RidzonDA, BroomerAJet al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).
  • Benes V , CastoldiM. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available.Methods50, 244 – 249 (2010).
  • van Rooij E . The art of microRNA research.Circ. Res.108, 219 – 234 (2011).
  • Bustin SA , BenesV, GarsonJAet al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611 – 622 (2009).
  • Ratert N , MeyerHA, JungMet al. Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS ONE 7, e39309 (2012).
  • Baffa R , FassanM, VoliniaSet al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J. Pathol. 219, 214 – 221 (2009).
  • Cao Y , YuSL, WangYet al. MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol 32, 179 – 188 (2011).
  • Catto JW , MiahS, OwenHCet al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 69, 8472 – 8481 (2009).
  • Dyrskjot L , OstenfeldMS, BramsenJBet al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 69, 4851 – 4860 (2009).
  • Friedman JM , LiangG, LiuCCet al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69, 2623 – 2629 (2009).
  • Han Y , ChenJ, ZhaoXet al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6, e18286 (2011).
  • Hanke M , HoefigK, MerzHet al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 28, 655 – 661 (2010).
  • Ichimi T , EnokidaH, OkunoYet al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int. J. Cancer 125, 345 – 352 (2009).
  • Lin T , DongW, HuangJet al. MicroRNA-143 as a tumor suppressor for bladder cancer. J. Urol. 181, 1372 – 1380 (2009).
  • Lin Y , WuJ, ChenHet al. Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett. 586, 442 – 447 (2012).
  • Neely LA , Rieger-ChristKM, NetoBSet al. A microRNA expression ratio defining the invasive phenotype in bladder tumors. Urol. Oncol. 28, 39 – 48 (2010).
  • Ostenfeld MS , BramsenJB, LamyPet al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29, 1073 – 1084 (2010).
  • Song T , XiaW, ShaoNet al. Differential miRNA expression profiles in bladder urothelial carcinomas. Asian Pac. J. Cancer Prev. 11, 905 – 911 (2010).
  • Villadsen SB , BramsenJB, OstenfeldMSet al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br. J. Cancer 106, 366 – 374 (2012).
  • Yamada Y , EnokidaH, KojimaSet al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 102, 522 – 529 (2011).
  • Hirata H , HinodaY, UenoKet al. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 33, 41 – 48 (2012).
  • Tatarano S , ChiyomaruT, KawakamiKet al. miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. Int. J. Oncol. 39, 13 – 21 (2011).
  • Yoshino H , ChiyomaruT, EnokidaHet al. The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br. J. Cancer 104, 808 – 818 (2011).
  • Wang G , ZhangH, HeHet al. Up-regulation of microRNA in bladder tumor tissue is not common. Int. Urol. Nephrol. 42, 95 – 102 (2010).
  • Sanders I , HoldenriederS, Walgenbach-BrunagelGet al. Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int. J. Urol. 19, 1017 – 1025 (2012).
  • Rosenberg E . Predicting progression of bladder urothelialcarcinoma using microRNA expression.BJU Int.112 (7), 1027 – 1034 (2013).
  • Gottardo F , LiuCG, FerracinMet al. Micro-RNA profiling in kidney and bladder cancers. Urol. Oncol. 25, 387 – 392 (2007).
  • Veerla S , LindgrenD, KvistAet al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int. J. Cancer 124, 2236 – 2242 (2009).
  • Pignot G , Cizeron-ClairacG, VacherSet al. MicroRNA expression profile in a large series of bladder tumors: Identification of a 3-mirna signature associated with aggressiveness of muscle-invasive bladder cancer. Int. J. Cancer 132 (11), 2479 – 2491 (2012).
  • Ratert N , MeyerHA, JungMet al. miRNA profiling identifies candidate miRNAs for bladder cancer diagnosis and clinical outcome. J. Mol. Diagn. 15, 695 – 705 (2013).
  • Nordentoft I , Birkenkamp-DemtroderK, AgerbaekMet al. miRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer. BMC. Med. Genomics 5, 40 (2012).
  • Wszolek MF , Rieger-ChristKM, KenneyPAet al. A microRNA expression profile defining the invasive bladder tumor phenotype. Urol. Oncol. 29 (6), 794 – 801.e1 (2009).
  • Dip N , ReisST, TimoszczukLSet al. Stage, grade and behavior of bladder urothelial carcinoma defined by the microRNA expression profile. J. Urol. 188, 1951 – 1956 (2012).
  • Wiklund ED , BramsenJB, HulfTet al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer 128, 1327 – 1334 (2011).
  • Taylor JM , AnkerstDP, AndridgeRR. Validation of biomarker-based risk prediction models.Clin. Cancer Res.14, 5977 – 5983 (2008).
  • Snowdon J , BoagS, FeilotterHet al. A pilot study of urinary microRNA as a biomarker for urothelial cancer. Can. Urol. Assoc. J. 1 – 5 (2012).
  • Tolle A , JungM, RabenhorstSet al. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol. Rep. 30 (4), 1949 – 1956 (2013).
  • Wang G , ChanES, KwanBCet al. Expression of microRNAs in the urine of patients with bladder cancer. Clin. Genitourin. Cancer 10, 106 – 113 (2012).
  • Miah S , DudziecE, DraytonRMet al. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br. J. Cancer 107, 123 – 128 (2012).
  • Mengual L , LozanoJJ, Ingelmo-TorresMet al. Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer. Int. J. Cancer 133 (11), 2631 – 2641 (2013).
  • Yun SJ , JeongP, KimWTet al. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int. J. Oncol. 41, 1871 – 1878 (2012).
  • Simonato F , VenturaL, SartoriNet al. Detection of microRNAs in archival cytology urine smears. PLoS ONE 8, e57490 (2013).
  • Scheffer AR , HoldenriederS, KristiansenGet al. Circulating microRNAs in serum: novel biomarkers for patients with bladder cancer? World J. Urol. 32 (2), 353 – 358 (2012).
  • Adam L , WszolekMF, LiuCGet al. Plasma microRNA profiles for bladder cancer detection. Urol. Oncol. 31 (8), 1701 – 1708 (2013).
  • Kenney PA , WszolekMF, Rieger-ChristKMet al. Novel ZEB1 expression in bladder tumorigenesis. BJU Int. 107, 656 – 663 (2011).
  • Keller A , LeidingerP, BauerAet al. Toward the blood-borne miRNome of human diseases. Nat. Methods 8, 841 – 843 (2011).
  • Wang LG , GuJ. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis.Cancer Epidemiol.36, e61 – e67 (2012).
  • Mahn R , HeukampLC, RogenhoferSet al. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology 77, 1265 – 1216 (2011).
  • Zheng XH , CuiC, ZhouXXet al. Centrifugation: an important pre-analytic factor that influences plasma microRNA quantification during blood processing. Chin J. Cancer 32 (12), 667 – 672 (2013) ( 2013).
  • Brase JC , JohannesM, SchlommTet al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer 128, 608 – 616 (2011).
  • Gonzales JC , FinkLM, GoodmanOBJret al. Comparison of circulating microRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin. Genitourin. Cancer 9, 39 – 45 (2011).
  • Cheng H , ZhangL, CogdellDEet al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 6, e17745 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.