245
Views
1
CrossRef citations to date
0
Altmetric
Review

Biomarkers of Calcineurin Inhibitor Nephrotoxicity in Transplantation

, &
Pages 1247-1262 | Published online: 19 Dec 2014

References

  • Bonventre JV , VaidyaVS, SchmouderR, FeigP, DieterleF. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol.28(5), 436–440 (2010).
  • Endre ZH , WesthuyzenJ. Early detection of acute kidney injury: emerging new biomarkers (review article). Nephrology13(2), 91–98 (2008).
  • Endre ZH , PickeringJW. Biomarkers and creatinine in AKI: the trough of disillusionment or the slope of enlightenment?Kidney Int.84(4), 644–647 (2013).
  • McCullough PA , BouchardJ, WaikarSSet al. Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the acute dialysis quality initiative (ADQI). In : Contributions to Nephrology.RoncoC (Ed.). S. Karger AG, Basel, Switzerland, 5–12 (2013).
  • Langham RG , BellomoR, D’IntiniVet al. KHA-CARI guideline: KHA-CARI adaptation of the KDIGO clinical practice guideline for acute kidney injury. Nephrology19(5), 261–265 (2014).
  • Pickering JW , EndreZH. Linking injury to outcome in acute kidney injury: a matter of sensitivity. PLoS ONE8(4), e62691 (2013).
  • Nankivell BJ , BorrowsRJ, FungCLS, O’ConnellPJ, ChapmanJR, AllenRDM. Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation78(4), 557–565 (2004).
  • Halloran PFP , HelmsLML, KungLL, NoujaimJJ. The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation68(9), 1356–1361 (1999).
  • Iwasaki K , ShiragaT, MatsudaHet al. Absorption, distribution, metabolism and excretion of tacrolimus (FK506) in the rat. Xenobiot. Metab. Disposit.13(3), 259–265 (1998).
  • Schmitz V , KlawitterJ, Bendrick-PeartJet al. Metabolic profiles in urine reflect nephrotoxicity of sirolimus and cyclosporine following rat kidney transplantation. Nephron Exp. Nephrol.111(4), e80–e91 (2009).
  • Suthanthiran M , SchwartzJE, DingRet al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N. Engl. J. Med.369(1), 20–31 (2013).
  • Klawitter J , Bendrick-PeartJ, RudolphBet al. Urine metabolites reflect time-dependent effects of cyclosporine and sirolimus on rat kidney function. Chem. Res. Toxicol.22(1), 118–128 (2009).
  • Pallet N , DjamaliA, LegendreC. Challenges in diagnosing acute calcineurin-inhibitor induced nephrotoxicity: from toxicogenomics to emerging biomarkers. Pharmacol. Res.64(1), 25–30 (2011).
  • Staatz CE , GoodmanLK, TettSE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II. Clin. Pharmacokinet.49(4), 207–221 (2010).
  • Calne RY , WhiteDJ, ThiruSet al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet2 (8104–5), 1323–1327 (1978).
  • Myers BDB , RossJJ, NewtonLL, LuetscherJJ, PerlrothMM. Cyclosporine-associated chronic nephropathy. N. Engl. J. Med.311(11), 699–705 (1984).
  • Issa N , KuklaA, IbrahimHN. Calcineurin inhibitor nephrotoxicity: a review and perspective of the evidence. Am. J. Nephrol.37(6), 602–612 (2013).
  • English J , EvanA, HoughtonDC, BennettWM. Cyclosporine-induced acute renal dysfunction in the rat. Evidence of arteriolar vasoconstriction with preservation of tubular function. Transplantation44(1), 135–141 (1987).
  • Barros EJE , BoimMAM, AjzenHH, RamosOLO, SchorNN. Glomerular hemodynamics and hormonal participation on cyclosporine nephrotoxicity. Kidney Int.32(1), 19–25 (1987).
  • Murray BM , PallerMS, FerrisTF. Effect of cyclosporine administration on renal hemodynamics in conscious rats. Kidney Int.28(5), 767–774 (1985).
  • Papachristou E , PapadimitropoulosA, KotsantisP, GoumenosDS, KatsorisPG, VlachojannisJG. Cyclosporine induces endothelin-1 mRNA synthesis and nitric oxide production in human proximal tubular epithelial cell cultures. Ren. Fail.31(5), 372–376 (2008).
  • Perico NN , ZojaCC, BenigniAA, GhilardiFF, GualandrisLL, RemuzziGG. Effect of short-term cyclosporine administration in rats on renin-angiotensin and thromboxane A2: possible relevance to the reduction in glomerular filtration rate. J. Pharmacol. Exp. Ther.239(1), 229–235 (1986).
  • Shihab FS , BennettWM, IsaacJ, YiH, AndohTF. Nitric oxide modulates vascular endothelial growth factor and receptors in chronic cyclosporine nephrotoxicity. Kidney Int.63(2), 522–533 (2003).
  • Bobadilla NA , GambaG, TapiaEet al. Role of NO in cyclosporin nephrotoxicity: effects of chronic NO inhibition and NO synthases gene expression. Am J. Physiol.274 (4 Pt 2), F791–F798 (1998).
  • Rosenthal RA , ChukwuogoNA, OcasioVH, KahngKU. Cyclosporine inhibits endothelial cell prostacyclin production. J. Surg. Res.46(6), 593–596 (1989).
  • Lee DB . Cyclosporine and the renin-angiotensin axis. Kidney Int.52(1), 248–260 (1997).
  • Pfeilschifter J , RüeggUT. Cyclosporin A augments angiotensin II-stimulated rise in intracellular free calcium in vascular smooth muscle cells. Biochem. J.248(3), 883–887 (1987).
  • Morozumi K , TakedaA, UchidaK, MihatschMJ. Cyclosporine nephrotoxicity: how does it affect renal allograft function and transplant morphology?Trans. Proc.36(2), S251–S256 (2004).
  • Walker RJ , LazzaroVA, DugginGG, HorvathJS, TillerDJ. Cyclosporin A inhibits protein kinase C activity: a contributing mechanism in the development of nephrotoxicity?Biochem. Biophys. Res. Commun.160(1), 409–415 (1989).
  • Naesens M , KuypersDRJ, SarwalM. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol.4(2), 481–508 (2009).
  • Nankivell BJ , BorrowsRJ, FungCL-S, O’ConnellPJ, AllenRD, ChapmanJR. The natural history of chronic allograft nephropathy. N. Engl. J. Med.349(24), 2326–2333 (2003).
  • Young BA , BurdmannEA, JohnsonRJet al. Cyclosporine A induced arteriolopathy in a rat model of chronic cyclosporine nephropathy. Kidney Int.48(2), 431–438 (1995).
  • Sis B , DadrasF, KhoshjouF, CockfieldS, MihatschMJ, SolezK. Reproducibility studies on arteriolar hyaline thickening scoring in calcineurin inhibitor-treated renal allograft recipients. Am. J. Transplant.6(6), 1444–1450 (2006).
  • Myers BD , SibleyR, NewtonLet al. The long-term course of cyclosporine-associated chronic nephropathy. Kidney Int.33(2), 590–600 (1988).
  • Ruiz P , KolbeckPC, ScroggsMW, SanfilippoF. Associations between cyclosporine therapy and interstitial fibrosis in renal allograft biopsies. Transplantation45(1), 91–95 (1987).
  • Islam M , BurkeJF, McGowanTAet al. Effect of anti-transforming growth factor-beta antibodies in cyclosporine-induced renal dysfunction. Kidney Int.59(2), 498–506 (2001).
  • Zhong Z , ArteelGE, ConnorHet al. Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. Am. J. Physiol.275 (4 Pt 2), F595–F604 (1998).
  • Djamali A . Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am J. Physiol. Renal Physiol.293(2), F445–F455 (2007).
  • Chen CF . Hypoxic preconditioning enhances renal superoxide dismutase levels in rats. J. Physiol.552(2), 561–569 (2003).
  • Nakanishi K , TajimaF, NakamuraAet al. Effects of hypobaric hypoxia on antioxidant enzymes in rats. J. Physiol.489 (Pt 3), 869–876 (1995).
  • Walker RJR , LazzaroVAV, DugginGGG, HorvathJSJ, TillerDJD. Evidence that alterations in renal metabolism and lipid peroxidation may contribute to cyclosporine nephrotoxicity. Transplantation50(3), 487–492 (1990).
  • Wang CC , SalahudeenAKA. Lipid peroxidation accompanies cyclosporine nephrotoxicity: effects of vitamin E. Kidney Int.47(3), 927–934 (1995).
  • Tariq M , MoraisC, SobkiS, Sulaiman AlM, Khader AlA. N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats. Nephrol. Dial. Transplantat.14(4), 923–929 (1999).
  • de Arriba G , CalvinoM, BenitoS, ParraT. Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicol. Lett.218(1), 30–38 (2013).
  • Zhang K . Signaling the unfolded protein response from the endoplasmic reticulum. J. Biol. Chem.279(25), 25935–25938 (2004).
  • Xu C , Bailly-MaitreB, ReedJC. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115(10), 2656–2664 (2005).
  • Pallet N , FougerayS, BeauneP, LegendreC, ThervetE, AnglicheauD. Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation. Transplantation88(5), 605–613 (2009).
  • Sarró EE , Jacobs-CacháCC, ItarteEE, MeseguerAA. A pharmacologically based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells. Toxicol. Appl. Pharmacol.258(2), 275–287 (2012).
  • Pallet N , BouvierN, BendjallabahAet al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am. J. Transplant.8(11), 2283–2296 (2008).
  • Wang P , HeitmanJ. The cyclophilins. Genome Biol.6(7), 226 (2005).
  • González-Guerrero C , Ocaña-SalcedaC, BerzalSet al. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells. Toxicol. Appl. Pharmacol.272(3), 825–841 (2013).
  • Alachkar N , RabbH, JaarBG. Urinary biomarkers in acute kidney transplant dysfunction. Nephron. Clin. Pract.118(2), c173–c8181 discussion c181 (2011).
  • Aicher L , WahlD, ArceA, GrenetO, SteinerS. New insights into cyclosporine A nephrotoxicity by proteome analysis. Electrophoresis19(11), 1998–2003 (1998).
  • Shu Z , PuX, XiongX, LiQ, WangY, ZhaiS. Differential expression of plasma proteins in cyclosporine a-induced rat acute nephrotoxicity. Biosci. Biotechnol. Biochem.73(3), 592–598 (2009).
  • Klawitter JJ , KlawitterJJ, KushnerEEet al. Association of immunosuppressant-induced protein changes in the rat kidney with changes in urine metabolite patterns: a proteo-metabonomic study. J. Proteome Res.9(2), 865–875 (2010).
  • Lamoureux F , GastinelLN, MestreE, MarquetP, EssigM. Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC). J. Proteomics75(12), 3674–3687 (2012).
  • Christians U , KlawitterJ, KlawitterJ, BrunnerN, SchmitzV. Biomarkers of immunosuppressant organ toxicity after transplantation: status, concepts and misconceptions. Expert Opin. Drug Metab. Toxicol.7(2), 175–200 (2011).
  • Wilmes A , LimoncielA, AschauerLet al. Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J. Proteomics79, 180–194 (2013).
  • Benigni A , BruzziI, MisterMet al. Nature and mediators of renal lesions in kidney transplant patients given cyclosporine for more than one year. Kidney Int.55(2), 674–685 (1999).
  • Naesens M , LerutE, DammeBV, VanrenterghemY, KuypersDRJ. Tacrolimus exposure and evolution of renal allograft histology in the first year after transplantation. Am. J. Transplant.7(9), 2114–2123 (2007).
  • Cosio FG , PelletierRP, SedmakDDet al. Pathologic classification of chronic allograft nephropathy: pathogenic and prognostic implications. Transplantation67(5), 690–696 (1999).
  • Snanoudj R , RoyalV, ElieCet al. Specificity of histological markers of long-term CNI nephrotoxicity in kidney-transplant recipients under low-dose cyclosporine therapy. Am. J. Transplant.11(12), 2635–2646 (2011).
  • Sharif A , ShabirS, ChandS, CockwellP, BallS, BorrowsR. Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. J. Am. Soc. Nephrol.22(11), 2107–2118 (2011).
  • Schena FP , PascoeMD, AlberuJet al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation87(2), 233–242 (2009).
  • Pisitkun T , GandolfoMT, Samarjitdas, KnepperMA, BagnascoSM. Application of systems biology principles to protein biomarker discovery: urinary exosomal proteome in renal transplantation. Proteomics – Clin. Appl.6 (5–6), 268–278 (2012) (Online). http://doi.wiley.com/10.1002/prca.201100108
  • Kanehisa M , GotoS. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.28(1), 27–30 (2000).
  • Huang DW , ShermanBT, LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.4(1), 44–57 (2008).
  • Peake PW , PiantaTJ, SuccarLet al. A comparison of the ability of levels of urinary biomarker proteins and exosomal mrna to predict outcomes after renal transplantation. PLoS ONE9(6), e98644 (2014).
  • Klawitter J , HaschkeM, KahleCet al. Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. Br. J. Clin. Pharmacol.70(2), 241–251 (2010) (Online). http://doi.wiley.com/10.1111/j.1365–2125.2010.03689.x
  • Ojo AO , HeldPJ, PortFKet al. Chronic renal failure after transplantation of a nonrenal organ. N. Engl J. Med.349(10), 931–940 (2003).
  • Bloom RD , DoyleAM. Kidney disease after heart and lung transplantation. Am. J. Transplant.6(4), 671–679 (2006).
  • Canales M , YoussefP, SpongRet al. Predictors of chronic kidney disease in long-term survivors of lung and heart-lung transplantation. Am. J. Transplant.6(9), 2157–2163 (2006).
  • Vossler MR , NiH, ToyW, HershbergerRE. Pre-operative renal function predicts development of chronic renal insufficiency after orthotopic heart transplantation. J. Heart Lung Transplant.21(8), 874–881 (2002).
  • Elzinga LW , RosenS, BurdmannEA, HattonDC, LindsleyJ, BennettWM. The role of renal sympathetic nerves in experimental chronic cyclosporine nephropathy. Transplantation69(10), 2149–2153 (2000).
  • Hamour IM , OmarF, LysterHS, PalmerA, BannerNR. Chronic kidney disease after heart transplantation. Nephrol. Dial. Transplant.24(5), 1655–1662 (2009).
  • Dantal J , HourmantM, CantarovichDet al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet351(9103), 623–628 (1998).
  • Euvrard S , KanitakisJ, ClaudyA. Skin cancers after organ transplantation. N. Engl. J. Med.348(17), 1681–1691 (2003).
  • Hofbauer GFL , BavinckJNB, EuvrardS. Organ transplantation and skin cancer: basic problems and new perspectives. Exp. Dermatol.19(6), 473–482 (2010).
  • Wong G , ChapmanJR. Cancers after renal transplantation. Transplantat. Rev.22(2), 141–149 (2008).
  • Kuschal C , ThomsK-M, SchubertSet al. Skin cancer in organ transplant recipients: effects of immunosuppressive medications on DNA repair. Exp. Dermatol.21(1), 2–6 (2011).
  • Yarosh DB , PenaAV, NaySL, CanningMT, BrownDA. Calcineurin inhibitors decrease DNA repair and apoptosis in human keratinocytes following ultraviolet B irradiation. J. Investig. Dermatol.125(5), 1020–1025 (2005).
  • Norman KG , CanterJA, ShiM, MilneGL, MorrowJD, SlighJE. Cyclosporine A suppresses keratinocyte cell death through MPTP inhibition in a model for skin cancer in organ transplant recipients. Mitochondrion10(2), 94–101 (2010).
  • Fukudo M . Distinct inhibitory effects of tacrolimus and cyclosporin A on calcineurin phosphatase activity. J. Pharmacol. Exp. Ther.312(2), 816–825 (2004).
  • Gummert JF . Incidence of malignant neoplasia after heart transplantation: a comparison between cyclosporine A and tacrolimus. Ann. Transplant.19, 300–304 (2014).
  • Stemmy EJ , BentonAS, LernerJ, AlcalaS, ConstantSL, FreishtatRJ. Extracellular cyclophilin levels associate with parameters of asthma in phenotypic clusters. J. Asthma48(10), 986–993 (2011).
  • Ray P , Rialon-GuevaraKL, VerasE, SullengerBA, WhiteRR. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker. J. Clin. Investig.122(5), 1734 (2012).
  • Ray P , SullengerBA, WhiteRR. Further characterization of the target of a potential aptamer biomarker for pancreatic cancer: cyclophilin B and its posttranslational modifications. Nucleic Acid Ther.23(6), 435–442 (2013).
  • Stemmy EJ , BalsleyMA, JurjusRA, DamskerJM, BukrinskyMI, ConstantSL. Blocking cyclophilins in the chronic phase of asthma reduces the persistence of leukocytes and disease reactivation. Am. J. Respir. Cell Mol. Biol.45(5), 991–998 (2011).
  • Li B , HartonoC, DingRet al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N. Engl. J. Med.344(13), 947–954 (2001).
  • Roydon Price E , JinM, LimD, PatiS, WalshCT, McKeonFD. Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc. Natl Acad. Sci. USA91(9), 3931–3935 (1994).
  • Bao Y-S , JiY, ZhaoS-L, MaL-L, XieR-JNaS-P. Serum levels and activity of indoleamine2,3-dioxygenase and tryptophanyl-tRNA synthetase and their association with disease severity in patients with chronic kidney disease. Biomarkers18(5), 379–385 (2013).
  • Cestari I , StuartK. A spectrophotometric assay for quantitative measurement of aminoacyl-tRNA synthetase activity. J. Biomol. Screen.18(4), 490–497 (2013).
  • Yurchenko V , O’ConnorM, DaiWWet al. CD147 is a signaling receptor for cyclophilin B. Biochem. Biophys. Res. Commun.288(4), 786–788 (2001).
  • Yurchenko V , ConstantS, EisenmesserE, BukrinskyM. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin. Exp. Immunol.160(3), 305–317 (2010).
  • Kato N , KosugiT, SatoWet al. Basigin/CD147 promotes renal fibrosis after unilateral ureteral obstruction. Am. J. Pathol.178(2), 572–579 (2011).
  • Nagaya H , KosugiT, Maeda-HoriMet al. CD147/basigin reflects renal dysfunction in patients with acute kidney injury. Clin. Exp. Nephrol. (18(5), 746–754 (2013).
  • Davidson B , GoldbergI, BernerA, KristensenGB, ReichR. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin. Exp. Metastasis20(2), 161–169 (2003).
  • Zhang Q , ZhouJ, KuXMet al. Expression of CD147 as a significantly unfavorable prognostic factor in hepatocellular carcinoma. Eur. J. Cancer Prev.16(3), 196–202 (2007).
  • Tsai WC , ChaoYC, LeeWH, ChenA, SheuLF, JinJS. Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters. Histopathology49(4), 388–395 (2006).
  • Als AB , DyrskjotL, von der MaaseHet al. Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer. Clin. Cancer Res.13(15), 4407–4414 (2007).
  • Ju XZ , YangJM, ZhouXY, LiZT, WuXH. EMMPRIN expression as a prognostic factor in radiotherapy of cervical cancer. Clin. Cancer Res.14(2), 494–501 (2008).
  • Sienel W , PolzerB, ElshawiKet al. Cellular localization of EMMPRIN predicts prognosis of patients with operable lung adenocarcinoma independent from MMP-2 and MMP-9. Mod. Pathol.21(9), 1130–1138 (2008).
  • Wu W , WangR, LiuHet al. Prediction of prognosis in gallbladder carcinoma by CD147 and MMP-2 immunohistochemistry. Med. Oncol.26(2), 117–123 (2008).
  • Pianta TJ , BuckleyNA, PeakePW, EndreZH. Clinical use of biomarkers for toxicant-induced acute kidney injury. Biomarkers Med.7(3), 441–456 (2013).
  • Choi HM , ParkKT, LeeJWet al. Urine neutrophil gelatinase-associated lipocalin predicts graft outcome up to 1 year after kidney transplantation. Transplant. Proc.45(1), 122–128 (2013).
  • Parikh CR , JaniA, MishraJet al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am. J. Transplant.6(7), 1639–1645 (2006).
  • Wasilewska A , Zoch-ZwierzW, Taranta-JanuszK, Michaluk-SkutnikJ. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity?Pediatr. Nephrol.25(5), 889–897 (2010).
  • Le Bricon TT , ThervetEE, BenlakehalMM, BousquetBB, LegendreCC, ErlichDD. Changes in plasma cystatin C after renal transplantation and acute rejection in adults. Clin. Chem.45(12), 2243–2249 (1999).
  • Bäckman L , AppelkvistEL, RingdénO, DallnerG. Glutathione transferase in the urine: a marker for post-transplant tubular lesions. Kidney Int.33(2), 571–577 (1988).
  • Bäckman L , RingdénO, BjörkhemI, LindbäckB. Increased serum [beta] 2 microglobulin during rejection, cyclosporine-induced nephrotoxicity, and cytomegalovirus infection in renal transplant recipients. Transplantation42(4), 368–371 (1986).
  • Duraj FF , BäckmanL, DatiF, RingdénO. Serum levels of alpha-1 microglobulin and beta-2 microglobulin in bone marrow transplant recipients treated with cyclosporin A. Transpl. Int.4(3), 146–150 (1991).
  • Gruber SA , GallichioM, RosanoTGet al. Comparative pharmacokinetics and renal effects of cyclosporin A and cyclosporin G in renal allograft recipients. J. Clin. Pharmacol.37(7), 575–586 (1997).
  • Marchewka Z , KuźniarJ, DługoszA. Enzymatic markers of cyclosporine nephrotoxicity in patients after renal transplantation. Int. Urol. Nephrol.31(5), 727–734 (1999).
  • Franz S , RegeniterA, HopferH, MihatschM, DickenmannM. Tubular toxicity in sirolimus- and cyclosporine-based transplant immunosuppression strategies: an ancillary study from a randomized controlled trial. Am. J. Kidney Dis.55(2), 335–343 (2010).
  • Pallet N , ChauvetS, ChasséJ-Fet al. Urinary retinol binding protein is a marker of the extent of interstitial kidney fibrosis. PLoS ONE9(1), e84708 (2014).
  • Yang J , ChoiHM, SeoMYet al. Urine liver-type fatty acid-binding protein predicts graft outcome up to 2 years after kidney transplantation. Transplant. Proc.46(2), 376–380 (2014).
  • Bäckman L , RingdénO, DatiF. Serum levels of alpha‐1 microglobulin in recipients of renal allografts. Transpl. Int.2(1), 23–26 (1989).
  • Nogare AL , DalpiazT, VeroneseFJV, GonçalvesLF, ManfroRC. Noninvasive analyses of kidney injury molecule-1 messenger rna in kidney transplant recipients with graft dysfunction. Transplant. Proc.44(8), 2297–2299 (2012).
  • Przybylowski P , MalyszkoJ, KozlowskaS, MalyszkoJS. Kidney injury molecule-1 correlates with kidney function in heart allograft recipients. Transplant. Proc.43(8), 3061–3063 (2011).
  • Malyszko J , Koc-ZorawskaE, MalyszkoJS, MysliwiecM. Kidney injury molecule-1 correlates with kidney function in renal allograft recipients. Transplant. Proc.42(10), 3957–3959 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.