365
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomarkers in IGA Nephropathy

, , &
Pages 1263-1277 | Published online: 19 Dec 2014

References

  • D’Amico G . Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am. J. Kidney Dis.36(2), 227–237 (2000).
  • Chauveau D , DrozD. Follow-up evaluation of the first patients with IgA nephropathy described at Necker Hospital. Contrib. Nephrol.104, 1–5 (1993).
  • Szeto CC , LaiFM, ToKFet al. The natural history of immunoglobulin A nephropathy among patients with hematuria and minimal proteinuria. Am. J. Med.110(6), 434–437 (2001).
  • Shen P , HeL, LiY, WangY, ChanM. Natural history and prognostic factors of IgA nephropathy presented with isolated microscopic hematuria in Chinese patients. Nephron. Clin. Pract.106(4), c157–c161 (2007).
  • Imai H , MiuraN. A treatment dilemma in adult immunoglobulin A nephropathy: what is the appropriate target, preservation of kidney function or induction of clinical remission?Clin. Exp. Nephrol.16(2), 195–201 (2012).
  • Coppo R , D’AmicoG. Factors predicting progression of IgA nephropathies. J. Nephrol.18(5), 503–512 (2005).
  • Suzuki K , HondaK, TanabeKet al. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int.63(6), 2286–2294 (2003).
  • Suzuki H , FanR, ZhangZet al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest.119(6), 1668–1677 (2009).
  • Novak J , JulianBA, TomanaM, MesteckyJ. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin. Nephrol.28(1), 78–87 (2008).
  • Barratt J , FeehallyJ. IgA nephropathy. J. Am. Soc. Nephrol.16(7), 2088–2097 (2005).
  • D’Amico G . Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin. Nephrol.24(3), 179–196 (2004).
  • Donadio JV and GrandeJP. IgA nephropathy. N. Engl. J. Med.347(10), 738–748 (2002).
  • Maeda A , GohdaT, FunabikiKet al. Significance of serum IgA levels and serum IgA/C3 ratio in diagnostic analysis of patients with IgA nephropathy. J. Clin. Lab. Anal.17(3), 73–76 (2003).
  • Kalantari S , RutishauserD, SamavatSet al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLoS ONE8(12), e80830 (2013).
  • Stangou M , PapagianniA, BantisCet al. Up-regulation of urinary markers predict outcome in IgA nephropathy but their predictive value is influenced by treatment with steroids and azathioprine. Clin. Nephrol.80(3), 203–210 (2013).
  • Liu L , ZhangY, DuanXet al. C3a, C5a renal expression and their receptors are correlated to severity of IgA nephropathy. J. Clin. Immunol.34(2), 224–232 (2014).
  • Coppo R , AmoreA, PeruzziL, VerganoL, CamillaR. Innate immunity and IgA nephropathy. J. Nephrol.23(6), 626–632 (2010).
  • Liu LL , JiangY, WangLN, and LiuN. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy. Clin. Exp. Immunol.169(2), 148–155 (2012).
  • Surin B , SachonE, RougierJPet al. LG3 fragment of endorepellin is a possible biomarker of severity in IgA nephropathy. Proteomics13(1), 142–152 (2013).
  • Bakker WW , van DaelCM, PierikLJet al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr. Nephrol.20(10), 1410–1415 (2005).
  • Lundberg S , GunnarssonI, JacobsonSH. Impact of the apolipoprotein B/apolipoprotein A-I ratio on renal outcome in immunoglobulin A nephropathy. Scand. J. Urol. Nephrol.46(2), 148–155 (2012).
  • Jackson D , CravenRA, HutsonRCet al. Proteomic profiling identifies afamin as a potential biomarker for ovarian cancer. Clin. Cancer Res.13(24), 7370–7379 (2007).
  • Humphries JM , PennoMA, WeilandFet al. Identification and validation of novel candidate protein biomarkers for the detection of human gastric cancer. Biochim. Biophys. Acta1844(5), 1051–1058 (2014).
  • Khositseth S , KanitsapN, WarnnissornN, ThongboonkerdV. IgA nephropathy associated with Hodgkin’s disease in children: a case report, literature review and urinary proteome analysis. Pediatr. Nephrol.22(4), 541–546 (2007).
  • Moon PG , LeeJE, YouSet al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics11(12), 2459–2475 (2011).
  • Yanagawa H , SuzukiH, SuzukiYet al. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS ONE9(5), e98081 (2014).
  • Suzuki Y , MatsuzakiK, SuzukiHet al. Serum levels of galactose-deficient immunoglobulin (Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy. Clin. Exp. Nephrol.18(5) 770–777 (2014).
  • Meng H , ZhangL, EXet al. Application of Oxford classification, and overexpression of transforming growth factor-beta1 and immunoglobulins in immunoglobulin A nephropathy: correlation with World Health Organization classification of immunoglobulin A nephropathy in a Chinese patient cohort. Transl Res.163(1), 8–18 (2014).
  • Hastings MC , MoldoveanuZ, JulianBAet al. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin. J. Am. Soc. Nephrol.5(11), 2069–2074 (2010).
  • Hastings MC , MoldoveanuZ, SuzukiHet al. Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opin. Med. Diagn.7(6), 615–627 (2013).
  • Zhao N , HouP, LvJet al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int.82(7), 790–796 (2012).
  • Takahashi K , RaskaM, Stuchlova HorynovaMet al. Enzymatic sialylation of IgA1 o-glycans: implications for studies of IgA nephropathy. PLoS ONE9(2), e99026 (2014).
  • Takahashi K , SmithAD, PoulsenKet al. Naturally occurring structural isomers in serum IgA1 o-glycosylation. J. Proteome Res.11(2), 692–702 (2012).
  • Suzuki H , RaskaM, YamadaKet al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J. Biol. Chem.289(8), 5330–5339 (2014).
  • Iwatani H , InoueT, WadaYet al. Quantitative change of IgA hinge O-glycan composition is a novel marker of therapeutic responses of IgA nephropathy. Biochem. Biophys. Res. Commun.428(3), 339–342 (2012).
  • Sogabe A , UtoH, KanmuraSet al. Correlation of serum levels of complement C4a desArg with pathologically estimated severity of glomerular lesions and mesangial hypercellularity scores in patients with IgA nephropathy. Int. J. Mol. Med.32(2), 307–314 (2013).
  • Zhang J , WangC, TangYet al. Serum immunoglobulin A/C3 ratio predicts progression of immunoglobulin A nephropathy. Nephrology (Carlton)18(2), 125–131 (2013).
  • Kim SJ , KooHM, LimBJet al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One7(7), e40495 (2012).
  • Zivkovic AM , YangJ, GeorgiKet al. Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations. Metabolomics8(6), 1102–1113 (2012).
  • Delanghe SE , SpeeckaertMM, SegersHet al. Soluble transferrin receptor in urine, a new biomarker for IgA nephropathy and Henoch-Schonlein purpura nephritis. Clin. Biochem.46 (7–8), 591–597 (2013).
  • Doench JG , SharpPA. Specificity of microRNA target selection in translational repression. Genes Dev.18(5), 504–511 (2004).
  • Ju T , BrewerK, D’SouzaA, CummingsRD, CanfieldWM. Cloning and expression of human core 1 beta1,3-galactosyltransferase. J. Biol. Chem.277(1), 178–186 (2002).
  • Hiki Y , OdaniH, TakahashiMet al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int.59(3), 1077–1085 (2001).
  • Tomana M , MatousovicK, JulianBAet al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int.52(2), 509–516 (1997).
  • Tomana M , NovakJ, JulianBAet al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Invest.104(1), 73–81 (1999).
  • Serino G , SallustioF, CoxSN, PesceF, SchenaFP. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol.23(5), 814–824 (2012).
  • Cox SN , SallustioF, SerinoGet al. Altered modulation of WNT-beta-catenin and PI3K/Akt pathways in IgA nephropathy. Kidney Int.78(4), 396–407 (2010).
  • Tan K , ChenJ, LiWet al. Genome-wide analysis of microRNAs expression profiling in patients with primary IgA nephropathy. Genome56(3), 161–169 (2013).
  • Bao H , ChenH, ZhuXet al. MiR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin alpha4 and alpha5 in IgA nephropathy. Kidney Int.85(3), 624–635 (2014).
  • Wang G , KwanBC, LaiFMet al. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis. Markers28(2), 79–86 (2010).
  • Wang G , KwanBC, LaiFMet al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers30(4), 171–179 (2011).
  • Wang G , KwanBC, LaiFMet al. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am. J. Nephrol.36(5), 412–418 (2012).
  • Szeto CC , Ching-HaKB, Ka-BikLet al. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis. Markers33(3), 137–144 (2012).
  • Suzuki H , KirylukK, NovakJet al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol.22(10), 1795–1803 (2011).
  • Singh A , SatchellSC, NealCRet al. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J. Am. Soc. Nephrol.18(11), 2885–2893 (2007).
  • Ebefors K , GranqvistA, IngelstenMet al. Role of glomerular proteoglycans in IgA nephropathy. PLoS One6(4), e18575 (2011).
  • Villanueva S , ContrerasF, TapiaAet al. Basic fibroblast growth factor reduces functional and structural damage in chronic kidney disease. Am. J. Physiol. Renal. Physiol.306(4), F430–F441 (2014).
  • Salmivirta M , LidholtK, LindahlU. Heparan sulfate: a piece of information. FASEB J.10(11), 1270–1279 (1996).
  • Medical Physiology (2nd Edition). Boron WF , BoulpaepEL (Eds). Elsevier, PA, USA, 1337 (2012).
  • Hill GS , KarouiKE, KarrasAet al. Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. I. Immunohistochemical studies. Kidney Int.79(6), 635–642 (2011).
  • Lai KN , LeungJC, ChanLYet al. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol. Dial. Transplant.24(1), 62–72 (2009).
  • Tian J , WangHP, MaoYY, JinJ, ChenJH. Reduced glomerular epithelial protein 1 expression and podocyte injury in immunoglobulin A nephropathy. J. Int. Med. Res.35(3), 338–345 (2007).
  • Xu L , YangHC, HaoCMet al. Podocyte number predicts progression of proteinuria in IgA nephropathy. Mod. Pathol.23(9), 1241–1250 (2010).
  • Choi SY , SuhKS, ChoiDE, LimBJ. Morphometric analysis of podocyte foot process effacement in IgA nephropathy and its association with proteinuria. Ultrastruct. Pathol.34(4), 195–198 (2010).
  • Kodama F , AsanumaK, TakagiMet al. Translocation of dendrin to the podocyte nucleus in acute glomerular injury in patients with IgA nephropathy. Nephrol. Dial. Transplant.28(7), 1762–1772 (2013).
  • Asanuma K , CampbellKN, KimK, FaulC, MundelP. Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes. Proc. Natl Acad. Sci. USA104(24), 10134–10139 (2007).
  • Qiu LQ , SinniahR, IHHS. Downregulation of Bcl-2 by podocytes is associated with progressive glomerular injury and clinical indices of poor renal prognosis in human IgA nephropathy. J. Am. Soc. Nephrol.15(1), 79–90 (2004).
  • Zhou XJ , ChengFJ, QiYYet al. FCGR2B and FCRLB gene polymorphisms associated with IgA nephropathy. PLoS ONE8(4), e61208 (2013).
  • Liu LL , LiuN, ChenYet al. Glomerular mannose-binding lectin deposition is a useful prognostic predictor in immunoglobulin A nephropathy. Clin. Exp. Immunol.174(1), 152–160 (2013).
  • Berthelot L , PapistaC, MacielTTet al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med.209(4), 793–806 (2012).
  • Snoeck V , PetersIR, CoxE. The IgA system: a comparison of structure and function in different species. Vet. Res.37(3), 455–467 (2006).
  • Launay P , GrosseteteB, Arcos-FajardoMet al. Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J. Exp. Med.191(11), 1999–2009 (2000).
  • Moura IC , CentellesMN, Arcos-FajardoMet al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med.194(4), 417–425 (2001).
  • Moura IC , Arcos-FajardoM, SadakaCet al. Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J. Am. Soc. Nephrol.15(3), 622–634 (2004).
  • Moura IC , Arcos-FajardoM, GdouraAet al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J. Am. Soc. Nephrol.16(9), 2667–2676 (2005).
  • Nimmerjahn F , RavetchJV. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol.8(1), 34–47 (2008).
  • Szeto CC and LiPK. MicroRNAs in IgA nephropathy. Nat. Rev. Nephrol.10(5), 249–256 (2014).
  • Fang Y , YuX, LiuYet al. miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-alpha activation. Am. J. Physiol. Renal. Physiol.304(10), F1274–F1282 (2013).
  • Bjornson Granqvist A , EbeforsK, SaleemMAet al. Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome. Am. J. Physiol. Renal. Physiol.291(4), F722–F730 (2006).
  • Wang W , QiuL, HowardAet al. Protective effects of aliskiren and valsartan in mice with diabetic nephropathy. J. Renin Angiotensin Aldosterone Syst. doi:10.1177/1470320313507123 (2014) ( Epub ahead of print).
  • Zhao S , GuX, GroomeLJ, WangY. Decreased nephrin and GLEPP-1, but increased VEGF, Flt-1, and nitrotyrosine, expressions in kidney tissue sections from women with preeclampsia. Reprod. Sci.16(10), 970–979 (2009).
  • Qin W , ChungAC, HuangXRet al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol.22(8), 1462–1474 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.