247
Views
0
CrossRef citations to date
0
Altmetric
Review

Cerebral Microbleeds as a Biomarker in Alzheimer’S Disease? A Review in The Field

&
Pages 9-18 | Received 14 Jun 2015, Accepted 15 Sep 2015, Published online: 07 Dec 2015

References

  • Scharf J , BräuherrE, ForstingM, SartorK. Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage. Neuroradiology36(7), 504–508 (1994).
  • Fazekas F , KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am. J. Neuroradiol.20(4), 637–642 (1999).
  • Shoamanesh A , KwokCS, BenaventeO. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc. Dis. Basel Switz.32(6), 528–534 (2011).
  • Pantoni L . Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol.9(7), 689–701 (2010).
  • Cerebral Microbleeds: Pathophysiology to Clinical Practice ( 1st Editition). WerringDJ (Ed.). Cambridge University Press, UK.
  • Charidimou A . Elderly and forgetful with transient neurological spells: a story of two amyloids?J. Neurol. Sci.351(1–2), 1–2 (2015).
  • Charidimou A , GangQ, WerringDJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J. Neurol. Neurosurg. Psychiatry.83(2), 124–137 (2012).
  • Viswanathan A , GreenbergSM. Cerebral amyloid angiopathy in the elderly. Ann. Neurol.70(6), 871–880 (2011).
  • Jellinger KA . Alzheimer disease and cerebrovascular pathology: an update. J. Neural Transm. Vienna Austria 1996.109(5–6), 813–836 (2002).
  • Ellis RJ , OlichneyJM, ThalLJet al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV. Neurology.46(6), 1592–1596 (1996).
  • Vinters HV . Cerebral amyloid angiopathy. A critical review. Stroke J. Cereb. Circ.18(2), 311–324 (1987).
  • Power MC , WeuveJ, GagneJJ, McQueenMB, ViswanathanA, BlackerD. The association between blood pressure and incident Alzheimer disease: a systematic review and meta-analysis. Epidemiol. Camb. Mass.22(5), 646–659 (2011).
  • Skoog I , LernfeltB, LandahlSet al. 15-year longitudinal study of blood pressure and dementia. Lancet.347(9009), 1141–1145 (1996).
  • Manolio TA , OlsonJ, LongstrethWT. Hypertension and cognitive function: pathophysiologic effects of hypertension on the brain. Curr. Hypertens. Rep.5(3), 255–261 (2003).
  • Cordonnier C , van der FlierWM. Brain microbleeds and Alzheimer’s disease: innocent observation or key player?Brain (2011). http://brain.oxfordjournals.org/content/early/2011/01/21/brain.awq321.
  • Cavalieri M , EnzingerC, PetrovicKet al. Vascular dementia and Alzheimer’s disease–are we in a dead-end road? Neurodegener. Dis. 7(1–3), 122–126 (2010).
  • Gorelick PB , ScuteriA, BlackSEet al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke J. Cereb. Circ.42(9), 2672–2713 (2011).
  • Esiri MM , NagyZ, SmithMZ, BarnetsonL, SmithAD. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet.354(9182), 919–920 (1999).
  • Heyman A , FillenbaumGG, Welsh-BohmerKAet al. Cerebral infarcts in patients with autopsy-proven Alzheimer’s disease: CERAD, part XVIII. Consortium to establish a registry for Alzheimer’s disease. Neurology.51(1), 159–162 (1998).
  • Snowdon DA , GreinerLH, MortimerJA, RileyKP, GreinerPA, MarkesberyWR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA J. Am. Med. Assoc.277(10), 813–817 (1997).
  • Zekry D , DuyckaertsC, MouliasRet al. Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathol. (Berl.)103(5), 481–487 (2002).
  • Greenberg SM , VernooijMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol.8(2), 165–174 (2009).
  • Conijn MMA , GeerlingsMI, BiesselsG-Jet al. Cerebral microbleeds on MR imaging: comparison between 1.5 and 7T. AJNR Am. J. Neuroradiol.32(6), 1043–1049 (2011).
  • Nandigam RNK , ViswanathanA, DelgadoPet al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am. J. Neuroradiol.30(2), 338–343 (2009).
  • Cheng A-L , BatoolS, McCrearyCRet al. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke J. Cereb. Circ.44(10), 2782–2786 (2013).
  • Goos JDC , van der FlierWM, KnolDLet al. Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging. Stroke J. Cereb. Circ.42(7), 1894–1900 (2011).
  • Shams S , MartolaJ, CavallinLet al. SWI or T2*: Which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. Am. J. Neuroradiol. (2015). http://www.ajnr.org/content/early/2015/02/19/ajnr.A4248.
  • Kikuta K , TakagiY, NozakiK, OkadaT, HashimotoN. Histological analysis of microbleed after surgical resection in a patient with moyamoya disease. Neurol. Med. Chir. (Tokyo)47(12), 564–567 (2007).
  • De Reuck J , AugerF, CordonnierCet al. Comparison of 7.0-T T2 *-magnetic resonance imaging of cerebral bleeds in post-mortem brain sections of Alzheimer patients with their neuropathological correlates. Cerebrovasc. Dis. Basel Switz.31(5), 511–517 (2011).
  • Schrag M , McAuleyG, PomakianJet al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol. (Berl.)119(3), 291–302 (2010).
  • Tanaka A , UenoY, NakayamaY, TakanoK, TakebayashiS. Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas. Stroke J. Cereb. Circ.30(8), 1637–1642 (1999).
  • Tatsumi S , ShinoharaM, YamamotoT. Direct comparison of histology of microbleeds with postmortem MR images: a case report. Cerebrovasc. Dis. Basel Switz.26(2), 142–146 (2008).
  • Cordonnier C , van der FlierWM, SluimerJD, LeysD, BarkhofF, ScheltensP. Prevalence and severity of microbleeds in a memory clinic setting. Neurology66(9), 1356–1360 (2006).
  • Hanyu H , TanakaY, ShimizuS, TakasakiM, AbeK. Cerebral microbleeds in Alzheimer’s disease. J. Neurol.250(12), 1496–1497 (2003).
  • Nakata-Kudo Y , MizunoT, YamadaKet al. Microbleeds in Alzheimer disease are more related to cerebral amyloid angiopathy than cerebrovascular disease. Dement. Geriatr. Cogn. Disord.22(1), 8–14 (2006).
  • Pettersen JA , SathiyamoorthyG, GaoF-Qet al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch. Neurol.65(6), 790–795 (2008).
  • van der Flier WM . Clinical aspects of microbleeds in Alzheimer’s disease. J. Neurol. Sci.322(1–2), 56–58 (2012).
  • Brundel M , HeringaSM, de BresserJet al. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease. J. Alzheimers Dis.31(2), 259–263 (2012).
  • van Veluw SJ , HeringaSM, KuijfHJet al. Cerebral cortical microinfarcts at 7Tesla MRI in patients with early Alzheimer’s disease. J. Alzheimers Dis.39(1), 163–167 (2014).
  • Olazarán J , RamosA, BoyanoIet al. Pattern of and risk factors for brain microbleeds in neurodegenerative dementia. Am. J. Alzheimers Dis. Other Demen.29(3), 263–269 (2014).
  • Benedictus MR , GoosJDC, BinnewijzendMAAet al. Specific risk factors for microbleeds and white matter hyperintensities in Alzheimer’s disease. Neurobiol. Aging.34(11), 2488–2494 (2013).
  • Heringa SM , ReijmerYD, LeemansAet al. Multiple microbleeds are related to cerebral network disruptions in patients with early Alzheimer’s disease. J. Alzheimers Dis. JAD.38(1), 211–221 (2014).
  • Wollenweber FA , BuergerK, MuellerCet al. Prevalence of cortical superficial siderosis in patients with cognitive impairment. J. Neurol.261(2), 277–282 (2014).
  • Zonneveld HI , GoosJDC, WattjesMPet al. Prevalence of cortical superficial siderosis in a memory clinic population. Neurology. doi:10.1212/WNL.0000000000000150 (2014) ( Epub ahead of print).
  • Yates PA , DesmondPM, PhalPMet al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology.82(14), 1266–1273 (2014).
  • Uetani H , HiraiT, HashimotoMet al. Prevalence and topography of small hypointense foci suggesting microbleeds on 3T susceptibility-weighted imaging in various types of dementia. AJNR Am. J. Neuroradiol.34(5), 984–989 (2013).
  • Shams S , MartolaJ, GranbergTet al. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis–the Karolinska Imaging Dementia Study. Am. J. Neuroradiol. (2014). http://www.ajnr.org/content/early/2014/12/18/ajnr.A4176.
  • Kester MI , GoosJDC, TeunissenCEet al. Associations between cerebral small-vessel disease and Alzheimer disease pathology as measured by cerebrospinal fluid biomarkers. JAMA Neurol.71(7), 855–862 (2014).
  • Fukui T , OowanY, YamazakiT, KinnoR. Prevalence and clinical implication of microbleeds in dementia with lewy bodies in comparison with microbleeds in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. Extra.3(1), 148–160 (2013).
  • Nakata Y , ShigaK, YoshikawaKet al. Subclinical brain hemorrhages in Alzheimer’s disease: evaluation by magnetic resonance T2*-weighted images. Ann. N. Y. Acad. Sci.977, 169–172 (2002).
  • Nagasawa J , KiyozakaT, IkedaK. Prevalence and clinicoradiological analyses of patients with Alzheimer disease coexisting multiple microbleeds. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc.23(9), 2444–2449 (2014).
  • Nagata K , TakanoD, YamazakiTet al. Cerebrovascular lesions in elderly Japanese patients with Alzheimer’s disease. J. Neurol. Sci.322(1–2), 87–91 (2012).
  • Doi H , InamizuS, SaitoB-Y, MuraiH, ArakiT, KiraJ-I. Analysis of cerebral lobar microbleeds and a decreased cerebral blood flow in a memory clinic setting. Intern. Med.54(9), 1027–1033 (2015).
  • van der Vlies AE , GoosJDC, BarkhofF, ScheltensP, van der FlierWM. Microbleeds do not affect rate of cognitive decline in Alzheimer disease. Neurology79(8), 763–769 (2012).
  • Atri A , LocascioJJ, LinJMet al. Prevalence and effects of lobar microhemorrhages in early-stage dementia. Neurodegener. Dis.2(6), 305–312 (2005).
  • Cordonnier C . Brain microbleeds: more evidence, but still a clinical dilemma. Curr. Opin. Neurol.24(1), 69–74 (2011).
  • Kantarci K , GunterJL, TosakulwongNet al. Focal hemosiderin deposits and β-amyloid load in the ADNI cohort. Alzheimers Dement.9(5), S116–S123 (2013).
  • Attems J , JellingerKA, LintnerF. Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol. (Berl.)110(3), 222–231 (2005).
  • Rosand J , MuzikanskyA, KumarAet al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann. Neurol.58(3), 459–462 (2005).
  • Vinters HV , GilbertJJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke J. Cereb. Circ.14(6), 924–928 (1983).
  • Whitwell JL , KantarciK, WeigandSDet al. Microbleeds in atypical presentations of Alzheimer’s disease: a comparison to dementia of the Alzheimer’s type. J. Alzheimers Dis.http://dx.doi.org/10.3233/JAD-142628.
  • De Reuck JL , DeramecourtV, AugerFet al. The significance of cortical cerebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases. A post-mortem 7.0-Tesla magnetic resonance study with neuropathological correlates. Cerebrovasc. Dis. Basel Switz.39(2), 138–143 (2015).
  • Goos JDC , HennemanWJP, SluimerJDet al. Incidence of cerebral microbleeds: a longitudinal study in a memory clinic population. Neurology74(24), 1954–1960 (2010).
  • Henneman WJP , SluimerJD, CordonnierCet al. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke J. Cereb. Circ.40(2), 492–498 (2009).
  • Benedictus MR , PrinsND, GoosJDC, ScheltensP, BarkhofF, van der FlierWM. Microbleeds, mortality, and stroke in Alzheimer disease: the MISTRAL study. JAMA Neurol.. doi:10.1001/jamaneurol.2015.14 (2015) ( Epub ahead of print).
  • Jeerakathil T , WolfPA, BeiserAet al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham study. Stroke J. Cereb. Circ.35(8), 1831–1835 (2004).
  • Qiu C , CotchMF, SigurdssonSet al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik study. Neurology.75(24), 2221–2228 (2010).
  • Staekenborg SS , KoedamELGE, HennemanWJPet al. Progression of mild cognitive impairment to dementia: contribution of cerebrovascular disease compared with medial temporal lobe atrophy. Stroke J. Cereb. Circ.40(4), 1269–1274 (2009).
  • Miwa K , TanakaM, OkazakiSet al. Multiple or mixed cerebral microbleeds and dementia in patients with vascular risk factors. Neurology.83(7), 646–653 (2014).
  • Haller S , BartschA, NguyenDet al. Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology.257(3), 764–773 (2010).
  • Martinez-Ramirez S , RomeroJ-R, ShoamaneshAet al. Diagnostic value of lobar microbleeds in individuals without intracerebral hemorrhage. Alzheimers Dement. J. Alzheimers Assoc. doi:10.1016/j.jalz.2015.04.009 (2015) ( Epub ahead of print).
  • Ringman JM , SachsMC, ZhouY, MonsellSE, SaverJL, VintersHV. Clinical predictors of severe cerebral amyloid angiopathy and influence of APOE genotype in persons with pathologically verified Alzheimer disease. JAMA Neurol.71(7), 878–883 (2014).
  • Charidimou A , PeetersA, FoxZet al. Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy: multicentre magnetic resonance imaging cohort study and meta-analysis. Stroke J. Cereb. Circ.43(9), 2324–2330 (2012).
  • Schrag M , CroftonA, ZabelMet al. Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in Alzheimer’s disease. J. Alzheimers Dis. JAD.24(1), 137–149 (2011).
  • Shams S , GranbergT, MartolaJet al. Cerebrospinal fluid profiles with increasing number of cerebral microbleeds in a continuum of cognitive impairment. J. Cereb. Blood Flow Metab. doi:271678X15606141 (2015) ( Epub ahead of print).
  • Goos JDC , KesterMI, BarkhofFet al. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke J. Cereb. Circ.40(11), 3455–3460 (2009).
  • Goos JDC , TeunissenCE, VeerhuisRet al. Microbleeds relate to altered amyloid-beta metabolism in Alzheimer’s disease. Neurobiol. Aging.33(5), 1011.e1–1011.e9 (2012).
  • Chiang GC , Cruz HernandezJC, KantarciK, JackCR, WeinerMW. Alzheimer’s Disease Neuroimaging Initiative. Cerebral microbleeds, CSF p-Tau, and cognitive decline: significance of anatomic distribution. AJNR Am. J. Neuroradiol. doi:10.3174/ajnr.A4351 (2015) ( Epub ahead of print).
  • Maia LF , MackenzieIRA, FeldmanHH. Clinical phenotypes of cerebral amyloid angiopathy. J. Neurol. Sci.257(1–2), 23–30 (2007).
  • Verbeek MM , KremerBPH, RikkertMO, Van DomburgPHMF, SkehanME, GreenbergSM. Cerebrospinal fluid amyloid beta(40) is decreased in cerebral amyloid angiopathy. Ann. Neurol.66(2), 245–249 (2009).
  • Jochemsen HM , van der FlierWM, AshbyELet al. Angiotensin-converting enzyme in cerebrospinal fluid and risk of brain atrophy. J. Alzheimers Dis. JAD.44(1), 153–162 (2015).
  • Jellinger KA , LaudaF, AttemsJ. Sporadic cerebral amyloid angiopathy is not a frequent cause of spontaneous brain hemorrhage. Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc.14(8), 923–928 (2007).
  • Liu C-C , KanekiyoT, XuH, BuG. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat. Rev. Neurol.9(2), 106–118 (2013).
  • Charidimou A , Martinez-RamirezS, ShoamaneshAet al. Cerebral amyloid angiopathy with and without hemorrhage: evidence for different disease phenotypes. Neurology84(12), 1206–1212 (2015).
  • Ii Y , MaedaM, KidaHet al. In vivo detection of cortical microinfarcts on ultrahigh-field MRI. J. Neuroimaging Off. J. Am. Soc. Neuroimaging.23(1), 28–32 (2013).
  • van Rooden S , GoosJDC, van OpstalAMet al. Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology270(1), 205–211 (2014).
  • De Reuck JL , CordonnierC, DeramecourtVet al. Microbleeds in postmortem brains of patients with Alzheimer disease: a T2*-weighted gradient-echo 7.0 T magnetic resonance imaging study. Alzheimer Dis. Assoc. Disord.27(2), 162–167 (2013).
  • Chi N-F , ChienL-N, KuH-L, HuC-J, ChiouH-Y. Alzheimer disease and risk of stroke: a population-based cohort study. Neurology.80(8), 705–711 (2013).
  • Thoonsen H , RichardE, BenthamPet al. Aspirin in Alzheimer’s disease: increased risk of intracerebral hemorrhage: cause for concern? Stroke J. Cereb. Circ. 41(11), 2690–2692 (2010).
  • Sperling RA , JackCRJr, BlackSEet al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. J. Alzheimers Assoc.7(4), 367–385 (2011).
  • Barakos J , SperlingR, SallowaySet al. MR imaging features of amyloid-related imaging abnormalities. AJNR Am. J. Neuroradiol.34(10), 1958–1965 (2013).
  • Sperling R , SallowayS, BrooksDJet al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol.11(3), 241–249 (2012).
  • Park J-H , SeoSW, KimCet al. Pathogenesis of cerebral microbleeds: In vivo imaging of amyloid and subcortical ischemic small vessel disease in 226 individuals with cognitive impairment. Ann. Neurol.73(5), 584–593 (2013).
  • van Assema DME , GoosJDC, van der FlierWMet al. No evidence for additional blood-brain barrier P-glycoprotein dysfunction in Alzheimer’s disease patients with microbleeds. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab.32(8), 1468–1471 (2012).
  • Vogelgesang S , JedlitschkyG, BrennA, WalkerLC. The role of the ATP-binding cassette transporter P-glycoprotein in the transport of β-amyloid across the blood–brain barrier. Curr. Pharm. Des.17(26), 2778–2786 (2011).
  • Vogelgesang S , WarzokRW, CascorbiIet al. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res.1(2), 121–125 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.