323
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Formation of milk lipids: a molecular perspective

Pages 391-401 | Published online: 18 Jan 2017

Bibliography

  • Oftedal OT: Use of maternal reserves as a lactation strategy in large mammals. Proc. Nutr. Soc. 59, 99–106 (2000)
  • Koletzko B, Rodriguez-Palmero M: Polyunsaturated fatty acids in human milk and their role in early infant development. J. Mammary Gland Biol. Neoplasia 4, 269–284 (1999)
  • Ringseis R, Saal D, Muller A, Steinhart H, Eder K: Dietary conjugated linoleic acids lower the triacylglycerol concentration in the milk of lactating rats and impair the growth and increase the mortalityof their suckling pups. J. Nutr. 134, 3327–3334 (2004)
  • Allen JC, Keller RP, Archer PC, Neville MC: Studies in human lactation: 6. Milk composition and daily secretion rates of macronutrients in the first year of lactation. Am. J. Clin. Nutr. 54, 69–80 (1991)
  • Schwertfeger KL, McManaman JL,Palmer CA, Neville MC, Anderson SM:Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44, 1100–1112 (2003)
  • Rudolph MC, Neville MC, Anderson SM: Lipid synthesis in lactation: diet and the fatty acid switch. J. Mammary Gland Biol. Neoplasia 12, 269–281 (2007).
  • Dils R, Clark S, Knudsen J: Comparativeaspects of milk fat synthesis. In: Comparative Aspects of Lactation. Peaker M (Ed.). Academic Press, London, UK 43–55 (1977)
  • Bargmann W, Knoop A: Morphology of lactation; light & electro-microscopic studies on the mammary glands of rats. Z. Zellforsch. Mikrosk. Anat. 49, 344–388 (1959)
  • Mather IH, Keenan TW: Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 3, 259–273 (1998). n Good overall review of milk lipid formation and secretion mechanisms
  • Neville MC, McFadden TB, Forsyth I: Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland Biol. Neoplasia 7, 49–66 (2002)
  • Brisken C: Hormonal control of alveolar development its implications for breast carcinogenesis. J. Mammary Gland Biol. Neoplasia 7(1), 39–48 (2002)
  • Hollmann KH: Cytology fine structure of the mammary gland. In: Lactation. Larson BL, Smith VR (Eds). Academic Press, NY, USA 1, 3–95 (1974)
  • Wooding FB: P. Comparative mammary fine structure. In: Comparative Aspects of Lactation. Peaker M (Ed.). Academic Press, London, UK 1–41(1977)
  • Russell TD, Palmer CA, Orlicky DJ et al.: Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin lipid metabolism. J. Lipid Res. 48, 1463–1475 (2007).
  • Herrera E: Lipid metabolism in pregnancy its consequences in the fetus newborn. Endocrine 19, 43–55 (2002)
  • Tauchi-Sato K, Ozeki S, Houjou T,Taguchi R, Fujimoto T: The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem. 277, 44507–44512 (2002)
  • Zweytick D, Athenstaedt K, Daum G: Intracellular lipid particles of eukaryotic cells. Biochim. Biophys. Acta 1469, 101–120 (2000)
  • Murphy DJ: The biogenesis functions of lipid bodies in animals, plants microorganisms. Prog. Lipid Res. 40, 325–438 (2001). n Comprehensive review of intracellular lipid droplet formation functions
  • Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR: Perilipins, ADRP, other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin. Cell Dev. Biol. 10, 51–58 (1999)
  • Wu CC, Howell KE, Neville MC, Yates JR 3rd, McManaman JL: Proteomics reveal a link between the endoplasmic reticulum lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21, 3470–3482 (2000). n First proteomic analysis of CLDs
  • Weiss SB, Kennedy EP, Kiyasu JY: The enzymatic synthesis of triglycerides. J. Biol. Chem. 235, 40–44 (1960)
  • Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr: Thematic review series: glycerolipids. DGAT enzymes triacylglycerol biosynthesis. J. Lipid Res. 49, 2283–2301 (2008)
  • Suckling KE, Stange EF: Role of acyl-CoA: cholesterol acyltransferase in cellular cholesterol metabolism. J. Lipid Res. 26, 647–671 (1985)
  • Stein O, Stein Y: Lipid synthesis, intracellular transport, secretion. II. Electron microscopic radioautographic study of the mouse lactating mammary gland. J. Cell Biol. 34, 251–263 (1967)
  • Keenan TW, Dylewski DP, Ghosal D, Keon BH: Milk lipid globule precursor release from endoplasmic reticulum reconstituted in a cell-free system. Eur. J. Cell Biol. 57, 21–29(1992)
  • Marchesan D, Rutberg M, Andersson L et al.: A phospholipase D-dependent process forms lipid droplets containing caveolin, adipocyte differentiation-related protein, vimentin in a cell-free system. J. Biol. Chem. 278, 27293–27300 (2003)
  • Stein O, Stein Y: Lipid synthesis, intracellular transport, storage, secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted ethanol-treated rats. J. Cell Biol. 33, 319–339 (1967)
  • Novikoff AB, Novikoff PM, Rosen OM, Rubin CS: Organelle relationships in cultured 3T3-L1 preadipocytes. J. Cell Biol. 87, 180–196 (1980)
  • Blanchette-Mackie EJ, Dwyer NK, Barber T et al.: Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes.J. Lipid Res. 36, 1211–1226 (1995)
  • Pol A, Luetterforst R, Lindsay M et al.: A caveolin dominant negative mutant associates with lipid bodies induces intracellular cholesterol imbalance. J. Cell Biol. 152, 1057–1070 (2001)
  • Robenek H, Hofnagel O, Buers I et al.: Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J. Cell Sci. 119, 4215–4224 (2006). n Alternative mechanism of CLD biogenesis
  • Wan HC, Melo RC, Jin Z, Dvorak AM, Weller PF: Roles origins of leukocyte lipid bodies: proteomic ultrastructural studies. FASEB J. 21, 167–178 (2007)
  • Ghosal D, Shappell NW, Keenan TW: Endoplasmic reticulum lumenal proteins of rat mammary gland. Potential involvement in lipid droplet assembly during lactation. Biochim. Biophys. Acta 1200, 175–181 (1994)
  • Brasaemle DL, Dolios G, Shapiro L, Wang R: Proteomic analysis of proteins associated with lipid droplets of basal lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842 (2004)
  • Liu P, Ying Y, Zhao Y et al.: Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787–3792 (2004)
  • Brown DA: Lipid droplets: proteins floating on a pool of fat. Curr. Biol. 11, R446–R449 (2001)
  • Zaczek M, Keenan TS: Morphological evidence for an endoplasmic reticulum origin of milk lipid globules obtained using lipid-selective staining procedures. Protoplasma 159, 179–182 (1990)
  • McManaman JL, Reyland ME, Thrower EC: Secretion fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas the salivary gland. J. Mammary Gland Biol. Neoplasia 11, 249–268 (2006)
  • Neville MC, Picciano MF: Regulation of milk lipid synthesis composition. Annu. Rev. Nutr. 17, 159–184 (1997)
  • Baldwin RL, Yang YT: Enzymatic metabolic changes in the development of lactation. In: Lactation. Larson BL, Smith VR (Eds). Academic Press, NY, USA 349–407 (1974).
  • Mellenberger RW, Bauman DE: Metabolic adaptations during lactogenesis. Fatty acid synthesis in rabbit mammary tissue during pregnancy lactation. Biochem. J. 138, 373–379 (1974)
  • Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC: Functional development of the mammary gland: use of expression profiling trajectory clustering to reveal changes in gene expression during pregnancy, lactation, involution. J. Mammary Gland Biol. Neoplasia 8, 287–307 (2003). n Array analysis of gene expression in the mouse mammary gland during secretory activation
  • Rudolph MC, McManaman JL, Phang T et al.: Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28, 323–336 (2007)
  • Boxer RB, Stairs DB, Dugan KD et al.: Isoform-specific requirement for Akt1 in the developmental regulation of cellularmetabolism during lactation. Cell Metab. 4, 475–490 (2006). n Evidence of AKT-1 requirement for triacylglycerol (TAG) synthesis in the mouse mammary gland
  • Elias JJ, Pitelka DR, Armstrong RC: Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177, 533–547 (1973)
  • Neville MC, Medina D, Monks J, Hovey RC: The mammary fat pad. J. Mammary Gland. Biol. Neoplasia 3, 109–116 (1998)
  • Kohn AD, Summers SA, Birnbaum MJ, Roth RA: Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake glucose transporter 4 translocation. J. Biol. Chem. 271, 31372–31378 (1996)
  • Magun R, Burgering BM, Coffer PJ et al.: Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation. Endocrinology 137, 3590–3593 (1996)
  • Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM: The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277, 33895–33900 (2002)
  • Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB: ATP citrate lyase is an important component of cell growth transformation. Oncogene 24, 6314–6322 (2005)
  • LaFave LT, Augustin LB, Mariash CN: S14: insights from knockout mice. Endocrinology 147, 4044–4047 (2006). n Evidence for the importance of Spot 14 in the regulation of fatty acid synthesis in the mammary gland
  • Seelig S, Liaw C, Towle HC, Oppenheimer JH: Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level. Proc. Natl Acad. Sci. USA 78, 4733–4737 (1981)
  • Wright TC, Cant JP, Brenna JT,McBride BW: Acetyl CoA carboxylase shares control of fatty acid synthesis with fatty acid synthase in bovine mammary homogenate. J. Dairy Sci. 89, 2552–2558 (2006)
  • Knowles LM, Smith JW: Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer. BMC Genomics 8, 168 (2007)
  • Jensen DR, Gavigan S, Sawicki V, Witsell D,Eckel RH, Neville MC: Regulation of lipoprotein lipase activity in the mammary gland of the lactating mouse. Biochem. J. 298, 321–327 (1994).
  • Kennedy EP: Metabolism of lipides. Annu. Rev. Biochem. 26, 119–148 (1957)
  • Coleman RA, Lee DP: Enzymes of triacylglycerol synthesis their regulation. Prog. Lipid Res. 43, 134–176 (2004)
  • Beigneux AP, Vergnes L, Qiao X et al.: Agpat6 – a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J. Lipid Res. 47, 734–744 (2006). n Functional importance of Agpat6 in TAG synthesis in the mammary gland
  • Cases S, Stone SJ, Zhou P et al.: Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, related family members. J. Biol. Chem. 276, 38870–38876 (2001)
  • Cases S, Smith SJ, Zheng YW et al.: Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl Acad. Sci. USA 95, 13018–13023(1998)
  • Stone SJ, Myers HM, Watkins SM et al.: Development of the mammary gland requires DGAT1 expression in stromal epithelial tissues. Development 131, 3047–3055 (2004)
  • Smith SJ, Cases S, Jensen DR et al.: Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat 25, 87–90 (2000)
  • Cases S, Zhou P, Shillingford JM et al.: Development of the mammary gland requires DGAT1 expression in stromal and epithelial tissues. Development 131, 3047–3055 (2004). n Demonstration of the importance of DGAT1 to mammary gland development
  • Grisart B, Farnir F, Karim L et al.: Genetic functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield composition. Proc. Natl Acad. Sci. USA 101, 2398–2403 (2004)
  • Wolins NE, Brasaemle DL, Bickel PE: A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580, 5484–5491 (2006)
  • Ducharme NA, Bickel PE: Lipid droplets in lipogenesis lipolysis. Endocrinology 149, 942–949 (2008)
  • Lu X, Gruia-Gray J, Copeland NG et al.: The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm. Genome 12, 741–749 (2001). n Description of the PAT gene family
  • Londos C, Sztalryd C, Tansey JT, Kimmel AR: Role of PAT proteins in lipid metabolism. Biochimie 87, 45–49 (2005)
  • Sztalryd C, Bell M, Lu X et al.: Functional compensation for adipose differentiation-related protein (ADFP) by TIP47 in an adfp null embryonic cell line. J. Biol. Chem. 281, 34341–34348 (2006)
  • Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA: Adipocyte differentiation-related protein reduces lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J. Lipid Res. 48, 2751–2761 (2007). n Demonstration that adipophilin controls access of ATGL to the CLD core
  • Tansey JT, Sztalryd C, Gruia-Gray J et al.: Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, resistance to diet-induced obesity. Proc. Natl Acad. Sci. USA 98, 6494–6499 (2001)
  • Martinez-Botas J, Anderson JB, Tessier D et al.: Absence of perilipin results in leanness reverses obesity in Lepr(db/db) mice. Nat. Genet. 26, 474–479 (2000)
  • Chang BH, Li L, Paul A et al.: Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol. Cell. Biol. 26, 1063–1076 (2006). n Physiological evidence that adipophilin is required for CLD accumulation
  • Imai Y, Varela GM, Jackson MB et al.: Reduction of hepatosteatosis lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132, 1947–1954 (2007)
  • Gao J, Serrero G: Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J. Biol. Chem. 274, 16825–16830 (1999)
  • Larigauderie G, Cuaz-Perolin C, Younes AB et al.: Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis inhibition of b-oxidation. FEBS J. 273, 3498–3510(2006)
  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ,Londos C: Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J. Lipid Res. 38, 2249–2263 (1997)
  • Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW: Adipophilin is a specific marker of lipid accumulation in diverse cell types diseases. Cell Tissue Res. 294, 309–321 (1998)
  • Vorbach C, Scriven A, Capecchi MR:The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping secretion: gene sharing in the lactating mammary gland. Genes Dev. 16, 3223–3235 (2002)
  • Ogg SL, Weldon AK, Dobbie L, Smith AJ, Mather IH: Expression of butyrophilin (Btn1a1) in lactatingmammary gland is essential for the regulated secretion of milk-lipid droplets. Proc. Natl Acad. Sci. USA 101, 10084–10089(2004)
  • McManaman JL, Palmer CA,Wright RM, Neville MC: Functional regulation of xanthine oxidoreductase expression localization in the mouse mammary gland: evidence of a role in lipid secretion. J. Physiol. 545, 567–579(2002)
  • Heid HW, Schnolzer M, Keenan TW: Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem. J. 320 (Pt 3), 1025–1030 (1996)
  • Jiang HP, Serrero G: Isolation characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc. Natl Acad. Sci. USA 89, 7856–7860 (1992)
  • Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR: Perilipins, ADRP,other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin. Cell Dev. Biol. 10, 51–58 (1999)
  • Russell TD, Palmer CA, Orlicky DJ et al.: Mammary glands of adipophilin-null mice produce an amino-terminally truncated form of adipophilin that mediates milk lipid droplet formation secretion. J. Lipid Res. 49, 206–216 (2008). n Evidence of the presence of an alternate translational start site in the adipophilin sequence
  • McManaman JL, Zabaronick W, Schaack J, Orlicky DJ: Lipid droplet targeting domains of adipophilin. J. Lipid Res. 44, 668–673 (2003)
  • Targett-Adams P, Chambers D, Gledhill Set al.: Live cell analysis targeting of the lipid droplet-binding adipocyte differentiationrelated protein. J. Biol. Chem. 278, 15998–16007 (2003)
  • Than NG, Sumegi B, Bellyei S et al.: Lipid droplet milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic differentiation processes of human epithelial cervical carcinoma cells. Eur. J. Biochem. 270, 1176–1188 (2003)
  • Robenek H, Hofnagel O, Buers I et al.: Butyrophilin controls milk fat globule secretion. Proc. Natl Acad. Sci. USA 103, 10385–10390 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.