64
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Arsonoliposomes for drug delivery applications

Pages 663-675 | Published online: 18 Jan 2017

  • Drummond DC, Noble CO, Hayes ME et al.: Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J. Pharm. Sci. 97(11), 4696–4740 (2008).
  • Elbayoumi TA, Torchilin VP: Liposomes for targeted delivery of antithrombotic drugs. Exp. Opin. Drug Deliv. 5(11), 1185–1198 (2008).
  • Campbell RB, Ying B, Kuesters GM et al.: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. J. Pharm. Sci. 98(2), 411–429 (2009)
  • Torchilin V: Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug Deliv. 5(9), 1003–1025 (2008).
  • Lammers T, Hennink WE, Storm G: Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer 99(3), 392–397 (2008).
  • Constantinides PP, Chaubal MV, Shorr R: Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv. Drug Deliv. Rev. 60(6), 757–767 (2008).
  • Banciu M, Schiffelers RM, Metselaar JM et al.: Utility of targeted glucocorticoids in cancer therapy. J. Liposome Res. 18(1), 47–57 (2008).
  • Antimisiaris SG, Fatouros D, Kallinteri P: Liposomes in drug delivery. In: Pharmaceutical Manufacturing Handbook, Section 5: New Dosage Forms. Gad E (Ed.). John Wiley and Sons, NY, USA, 443–533 (2008).
  • Patil RR, Guhagarkar SA, Devarajan PV: Engineered nanocarriers of doxorubicin: a current update. Crit. Rev. Ther. Drug Carrier Systems 25(1), 1–61 (2008).
  • Injac R, Strukelj B: Recent advances in protection against doxorubicin-induced toxicity. Tech. Cancer Res. Treat. 7(6), 497–516 (2008).
  • Torrado JJ, Espada R, Ballesteros MP et al.: Amphotericin B formulations and drug targeting. J. Pharm. Sci. 97(7), 2405–2425 (2008).
  • Bonacucina G, Cespi M, Misici-Falzi M et al.: Colloidal soft matter as drug delivery system. J. Pharm. Sci. 98(1), 1–42 (2009).
  • Allen TM, Cheng WWK, Hare JI et al.: Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anticancer Agents Med. Chem. 6(6), 513–523 (2006).
  • Fatouros D, Ioannou PV, Antimisiaris SG: Novel nanosized arsenic containing vesicles for drug delivery: arsonoliposomes. J. Nanosci. Nanotechnol. 6, 2618–2687 (2006).
  • Antimisiaris SG: Arsonoliposomes for drug delivery. J. Drug Deliv. Sci. Technol. 17(6), 377–388 (2007).
  • Bosch F, Rosich L: The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his nobel prize. Pharmacology 82(3), 171–179 (2008).
  • Liu J, Lu Y, Wu Q et al.: Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J. Pharmacol. Exper. Therapeutics 326(2), 363–368 (2008).
  • Dilda PJ, Hogg PJ: Arsenical-based cancer drugs. Cancer Treat. Rev. 33(6), 542–564 (2007).
  • Riethmiller S: From atoxyl to salvarsan: searching for the magic bullet. Chemotherapy 51(5), 234–242 (2005).
  • Soignet SL, Frankel SR, Douer D et al.: United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J. Clin. Oncol. 19(18), 3852–3860 (2001).
  • Dombret H, Fenaux P, Soignet SL et al.: Established practice in the treatment of patients with acute promyleocytic leukemia and the introduction of arsenic trioxide as a novel therapy. Semin. Hematol. 39(2 S1), 8–13 (2002).
  • Zheng P-Z, Wang K-K, Zhang Q-Y et al.: Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation apoptosis of promyelocytic leukemia. Proc. Natl Acad. Sci. USA 102(21), 7653–7658 (2005).
  • Chen Z, Chen GQ, Shen ZX et al.: Expanding the use of arsenic trioxide: leukemias and beyond. Semin. Hematol. 39(2 S1), 22–26 (2002).
  • Kallinteri P, Fatouros D, Klepetsanis P et al.: Arsenic trioxide liposomes. Encapsulation efficiency and in vitro stability. J. Liposome Res. 14(1–2), 27–38 (2004).
  • Chen H, MacDonald RC, Li S et al.: Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release. J. Am. Chem. Soc. 128(41), 13348–13349 (2006).
  • Timotheatou D, Ioannou PV, Scozzafava A et al.: Carbonic anhydrase interaction with lipothioasrenites: a novel class of isozymes I and II inhibitors. Met. Based Drugs 3, 263–268 (1996).
  • Tsivgoulis GM, Sotiropoulos DN, Ioannou PV: 1,2-dihydroxypropyl-3-arsonic acid: a key intermediate for arsonolipids. Phosphorus Sulfur Silicon Relat. Elem. 57, 189–193 (1991).
  • Tsivgoulis GM, Sotiropoulos DN, Ioannou PV: Rac-1,2-diacylo-xypropyl-3-arsonic acids: arsonolipid analogues of phosphonolipids. Phosphorus Sulfur Silicon Relat. Elem. 63, 329–334 (1991).
  • Serves SV, Sotiropoulos DN, Ioannou PV et al.: Synthesis of (R)- and (S)-1,2-diacyloxypropyl-3-arsonic acids: optically active arsonolipids. Phosphorus Sulfur Silicon Relat. Elem. 71, 99–105 (1992).
  • Serves SV, Sotiropoulos DN, Ioannou PV et al.: One pot synthesis of arsonolipid via thioarsenite precursors. Phosphorus Sulfur Silicon Relat. Elem. 81, 181–190 (1993).
  • Tsivgoulis GM, Ioannou PV: A reinvestigation of the synthesis of arsonolipids (2,3-diacyloxypropylarsonic acids). Chem. Phys. Lipids 152(2), 113–121 (2008).
  • Describes the most recent (high-yield) method found for the synthesis of arsonolipids.
  • Devalla S, Feldmann J: Determination of lipid-soluble arsenic species in seaweed-eating sheep from Orkney. App. Organomet. Chem. 17, 906–912 (2003).
  • Dembitsky VM, Levitsky DO: Arsenolipids. Progr. Lipid Res. 43(5), 403–448 (2004).
  • Tran DN, Nagashima Y, Shiomi K: Watersoluble and lipid-soluble arsenic compounds in Japanese flying squid Todarodes pacificus. J. Agric. Food Chem. 55(8), 3196–3202 (2007).
  • Thomson D, Maher W, Foster S: Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Appl. Organomet. Chem. 21(6), 396–411 (2007).
  • Rumpler A, Edmonds JS, Katsu M et al.: Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity? Angew. Chemie 47(14), 2665–2667 (2008).
  • Kigawa J, Minagawa Y, Kanamori Y et al.: Glutathione concentration may be a useful predictor of response to second-line chemotherapy in patients with ovarian cancer. Cancer 82, 697–702 (1998).
  • Fatouros D, Gortzi O, Klepetsanis P et al.: Preparation and properties of arsonolipid containing liposomes. Chem. Phys. Lipids 109, 75–89 (2001).
  • First publication about the preparation and characterization of arsonoliposomes (ARSL). Describes the method for preparation of non-sonicated and sonicated ARSL and the methods for physicochemical characterization and evaluation of vesicle morphology.
  • Talsma H, Van Steenbergen MJ, Borchert JCH et al.: A novel technique for the one-step preparation of liposomes and nonionic surfactant vesicles without the use of organic solvents. Liposome formation in a continuous gas stream: the ‘bubble’ method. J. Pharm. Sciences 83(3), 276–280 (1994).
  • Koutsopoulos S, Fatouros DG, Ioannou PV, et al.: Thermal behavior of non-sonicated arsonolipid dispersions. Biophys. Chem. 121(2), 150–154 (2006).
  • Antimisiaris SG, Ioannou PV: Arsonoliposomes: Preparation and physicochemical characterization. In: Methods in Molecular Biology. Weissig V (Ed.). Springer /Humana Press, NJ, USA (2010) (In press).
  • Describes in detail the preparation and characterization of all types of ARSL formulated to date.
  • Gortzi O, Papadimitriou E, Antimisiaris SG et al.: Cytotoxicity of arsonolipid containing liposomes towards cancer and normal cells in culture: effect of arsonolipid acyl chain length. Eur. J. Pharm. Sci. 18(2), 175–183 (2003).
  • Describes the relative cytotoxicity of ARSL composed of different Ars (with C12, C14 or C18 acyl chains) towards cancer and normal cells in culture.
  • Piperoudi S, Ioannou PV, Frederik P et al.: Arsonoliposomes: effect of lipid composition on their stability. J. Liposome Res. 15(3–4), 187–197 (2005).
  • Piperoudi S, Fatouros D, Ioannou PV et al.: Incorporation of PEG-lipids in arsonoliposomes can produce highly stable arsenic-containing vesicles of specific lipid composition. Chem. Phys. Lipids 139(2), 96–106 (2006).
  • First publication about the anticancer activity (in vitro) of ARSL that contain C16 Ars. Proof-of-principle of the theoretical hypothesis that ARSL will be more toxic towards cancer cells (with increased cellular thiol levels) compared with normal cells.
  • Describes the stability of ARSL following pegyaltion of their surface. It is demonstrated that specific ARSL compositions are very stable during incubation in the presence of plasma proteins, as well as divalent cations.
  • Fatouros DG, Piperoudi S, Gortzi O et al.: Physical stability of sonicated arsonoliposomes: effect of calcium ions. J. Pharm. Sci. 94(1), 46–55 (2005).
  • Fatouros DG, Bouropoulos N, Ioannou PV et al.: Stability and aggregation studies of non-sonicated arsonolipid-containing vesicles. Cell Mol. Biol. Lett. 10(1), 173–183 (2005).
  • Antimisiaris SG, Ioannou PV, Loiseau PM: In vitro antileishmanial and trypanocidal activities of arsonoliposomes and preliminary in vivo distribution. J. Pharm. Pharmacol. 55(5), 647–652, (2003).
  • Antimisiaris SG, Klepetsanis P, Zachariou V et al.: In vivo distribution of arsenic after i.p. injection of arsonoliposomes in balb-c mice. Int. J. Pharm. 289(1–2), 151–158 (2005).
  • Describes the effect of ARSL lipid composition on their in vivo distribution after intraperitoneal administration.
  • Zagana P, Klepetsanis P, Ioannou PV et al.: Trypanocidal activity of arsonoliposomes: effect of vesicle lipid composition. Biomed. Pharmacother. 61(8), 499–504 (2007).
  • membrane rigidity of ARSL on their trypanocidal activity is demonstrated.
  • Zagana P, Haikou M, Klepetsanis P et al.: In vivo distribution of arsonoliposomes: effect of vesicle lipid composition. Int. J. Pharm. 347(1–2), 86–92 (2008).
  • Detailed description of the trypanocidal activity of various types of ARSL, as measured in vitro and in vivo. The effect of the
  • Kenworthy AK, Simon SA, McIntosh TJ: Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J. 68(5), 1903–1920 (1995).
  • Kenworthy AK, Hristova K, Needham D et al.: Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J. 68(5), 1921–1936 (1995).
  • Montesano G, Bartucci R, Belsito S et al.: Lipid membrane expansion and micelle formation by polymer-grafted lipids: scaling with polymer length studied by spin-label electron spin resonance. Biophys. J. 80(3), 1372–1383 (2001).
  • Garbuzenko O, Barenholz Y, Priev A: Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids 135(2), 117–129 (2005).
  • Fatouros DG, Klepetsanis P, Ioannou PV et al.: The effect of pH on the electrophoretic behaviour of a new class of liposomes: arsonoliposomes. Int. J. Pharm. 288(1), 151–156 (2005).
  • Doak GO, Freedman LD: Organometallic Compounds of Arsenic, Antimony and Bismuth. Wiley, NY, USA, 26–27 (1970).
  • Strijkers GJ, Mulder WJM, Van Heeswijk RB et al.: Relaxivity of liposomal paramagnetic MRI contrast agents. MAGMA 18(4), 186–192 (2005).
  • Balana-Fouce R, Reguera RM, Cubria JC et al.: The pharmacology of leishmaniasis. Gen. Pharmacology 30(4), 435–443 (1998).
  • Date AA, Joshi MD, Patravale VB: Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv. Drug Del. Rev. 59(6), 505–521 (2007).
  • Barratt G, Legrand P: Comparison of the efficacy and pharmacology of formulations of amphotericin B used in treatment of leishmaniasis. Curr. Opin. Infectious Dis. 18(6), 527–530 (2005).
  • Owais M, Gupta CM: Targeted drug delivery to macrophages in parasitic infections. Curr. Drug Delivery 2(4), 311–318 (2005).
  • Kayser O, Kiderlen AF: Delivery strategies for antiparasitics. Exp. Opinion Invest. Drugs 12(2), 197–207 (2003).
  • Medda S, Jaisankar P, Manna RK et al.: Phospholipid microspheres: a novel delivery mode for targeting antileishmanial agent in experimental leishmaniasis. J. Drug Targ. 11(2), 123–128 (2003).
  • Gortzi O, Papadimitriou E, Kontoyannis CG et al.: Arsonoliposomes, a novel class of arsenic containing liposomes: effect of palmitoylarsonolipid containing liposomes on the viability of various cancer and normal cells in culture. Pharm. Research 19(1), 79–86 (2002).
  • Describes the relative anticancer activity (in vitro) of ARSL with different lipid compositions. Provides proof that rigidmembrane ARSL-types are equivalently toxic towards cancer cells with ‘leaky’ membrane ARSL-types.
  • Zagana P, Haikou M, Giannopoulou E et al.: Arsonoliposome interaction with cells in culture. Effect of pegylation and lipid composition. J. Mol. Nutr. Food Res. 53(5), 592–599 (2009).
  • Papadimitriou E, Antimisiaris SG: Interactions of PC/Chol and PS/Chol liposomes with human cells in vitro. J. Drug Target. 8(5), 335–351 (2000).
  • Haikou M, Zagana P, Ioannou PV et al.: Arsonoliposome interaction with thiols. Effect of pegylation and arsonolipid content on their integrity during incubation in the presence of glutathione. J. Nanosc. Nanotech. 6, 2974–2978 (2006).
  • Ghosh S, Strum JC, Sciorra VA et al.: Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid: Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J. Biol. Chem. 271(14), 8472–8480 (1996).
  • Detailed description of the distribution of arsenic in body organs following intraperitoneal administration of ARSL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.