113
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Depot specificities of PPARg ligand actions on lipid and glucose metabolism and their implication in PPARg-mediated body fat redistribution

Pages 633-642 | Published online: 18 Jan 2017

  • Dreyer C, Krey G, Keller H et al.: Control of the peroxisomal b-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879–887 (1992).
  • Discovery of PPARγ and other members of the PPAR family
  • Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999).
  • Zhu Y, Qi C, Korenberg JR et al.: Structural organization of mouse peroxisome proliferator-activated receptor g (mPPAR g) gene: alternative promoter use and different splicing yield two mPPAR g isoforms. Proc. Natl Acad. Sci. USA 92, 7921–7925 (1995).
  • Larsen TM, Toubro S, Astrup A: PPARγ agonists in the treatment of Type II diabetes: is increased fatness commensurate with long-term efficacy? Int. J. Obes. Relat. Metab. Disord. 27, 147–161 (2003).
  • Ferre P: The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53(Suppl. 1), S43–S50 (2004).
  • Bouaboula M, Hilairet S, Marchand J et al.: Anandamide induced PPARγ transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur. J. Pharmacol. 517, 174–181 (2005).
  • Beekum O, Fleskens V, Kalkhoven E: Posttranslational modifications of PPAR-g: fine-tuning the metabolic master regulator. Obesity (Silver Spring) 17, 213–219 (2009).
  • Diradourian C, Girard J, Pegorier JP: Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 87, 33–38 (2005).
  • Lonard DM, Lanz RB, O’Malley BW: Nuclear receptor coregulators and human disease. Endocr. Rev. 28, 575–587 (2007).
  • Lonard DM, O’Malley BW: Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol. Cell 27, 691–700 (2007).
  • Rochette-Egly C: Dynamic combinatorial networks in nuclear receptor-mediated transcription. J. Biol. Chem. 280, 32565–32568 (2005).
  • Feige JN, Auwerx J: Transcriptional coregulators in the control of energy homeostasis. Trends Cell. Biol. 17, 292–301 (2007).
  • Heikkinen S, Auwerx J, Argmann CA: PPARγ in human and mouse physiology. Biochim. Biophys. Acta 1771, 999–1013 (2007).
  • Imai T, Takakuwa R, Marchand S et al.: Peroxisome proliferator-activated receptor g is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl Acad. Sci. USA 101, 4543–4547 (2004).
  • Demonstration of the essential role of PPARγ in the survival of mature adipocytes.
  • Grimaldi PA: The roles of PPARs in adipocyte differentiation. Prog. Lipid Res. 40, 269–281 (2001).
  • Rosen ED, MacDougald OA: Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896 (2006).
  • Tontonoz P, Spiegelman BM: Fat and beyond: the diverse biology of PPARg. Annu. Rev. Biochem. 77, 289–312 (2008).
  • Agostini M, Schoenmakers E, Mitchell C et al.: Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance. Cell. Metab. 4, 303–311 (2006).
  • Barroso I, Gurnell M, Crowley VE et al.: Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).
  • Savage DB, Agostini M, Barroso I et al.: Digenic inheritance of severe insulin resistance in a human pedigree. Nat. Genet. 31, 379–384 (2002).
  • Rosen ED, Sarraf P, Troy AE et al.: PPAR g is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).
  • Mudaliar S, Chang AR, Henry RR: Thiazolidinediones, peripheral edema, and Type 2 diabetes: incidence, pathophysiology, and clinical implications. Endocr. Pract. 9, 406–416 (2003).
  • Miyazaki Y, Mahankali A, Matsuda M et al.: Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in Type 2 diabetic patients. J. Clin. Endocrinol. Metab. 87, 2784–2791 (2002).
  • First study to demonstrate the association between fat redistribution from visceral to subcutaneous fat and improvement in insulin sensitivity in humans treated with PPARγ ligand.
  • Despres JP, Lemieux I: Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).
  • Yang X, Smith U: Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia 50, 1127–1139 (2007).
  • Wajchenberg BL: Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21, 697–738 (2000).
  • Kim JY, van de Wall E, Laplante M et al.: Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).
  • Extensive evaluation of the mechanisms involved in the fat redistribution induced by PPARγ ligand treatment.
  • Yamauchi T, Kamon J, Waki H et al.: The mechanisms by which both heterozygous peroxisome proliferator-activated receptor g (PPARg) deficiency and PPARγ agonist improve insulin resistance. J. Biol. Chem. 276, 41245–41254 (2001).
  • Takamura T, Nohara E, Nagai Y, Kobayashi K: Stage-specific effects of a thiazolidinedione on proliferation, differentiation and PPARγ mRNA expression in 3T3-L1 adipocytes. Eur. J. Pharmacol. 422, 23–29 (2001).
  • Vernochet C, Milstone DS, Iehle C et al.: PPARg-dependent and PPARg-independent effects on the development of adipose cells from embryonic stem cells. FEBS Lett. 510, 94–98 (2002).
  • Niesler CU, Siddle K, Prins JB: Human preadipocytes display a depot-specific susceptibility to apoptosis. Diabetes 47, 1365–1368 (1998).
  • Adams M, Montague CT, Prins JB et al.: Activators of peroxisome proliferator-activated receptor g have depot-specific effects on human preadipocyte differentiation. J. Clin. Invest. 100, 3149–3153 (1997).
  • Kahn SE, Hull RL, Utzschneider KM: Mechanisms linking obesity to insulin resistance and Type 2 diabetes. Nature 444, 840–846 (2006).
  • Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, Deshaies Y: PPAR-g activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 52, 291–299 (2003).
  • Demonstration of the essential role of PPARγ in the differentiation of preadipocytes into mature adipocytes and adipose tissue formation.
  • Barak Y, Nelson MC, Ong ES et al.: PPAR g is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595 (1999).
  • Kubota N, Terauchi Y, Miki H et al.: PPAR g mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597–609 (1999).
  • Medina-Gomez G, Gray SL, Yetukuri L et al.: PPAR g 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 3, E64 (2007).
  • Demonstrates the protective effects of enhanced fat deposition and expansion of subcutaneous adipose depot against development of insulin resistance and metabolic syndrome.
  • Harman-Boehm I, Bluher M, Redel H et al.: Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab. 92, 2240–2247 (2007).
  • Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ: The biology of white adipocyte proliferation. Obes. Rev. 2, 239–254 (2001).
  • Demonstration of the essential role of the PPARg2 isoform in the ability of adipose tissue to expand in response to high-fat feeding.
  • Lehmann JM, Moore LB, Smith-Oliver TA et al.: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor g (PPAR g). J. Biol. Chem. 270, 12953–12956 (1995).
  • Semple RK, Chatterjee VK, O’Rahilly S: PPAR g and human metabolic disease. J. Clin. Invest. 116, 581–589 (2006).
  • Excellent review on the regulation of white adipocyte proliferation.
  • Okuno A, Tamemoto H, Tobe K et al.: Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J. Clin. Invest. 101, 1354–1361 (1998).
  • de Souza CJ, Eckhardt M, Gagen K et al.: Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50, 1863–1871 (2001).
  • First demonstration of a depot-specific modulation of lipoprotein lipase activity by PPARγ ligands in the context of fat redistribution from visceral to subcutaneous fat.
  • Festuccia WT, Blanchard PG, Turcotte V et al.: Depot-specific effects of the PPARγ agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J. Lipid Res. 50, 1185–1194 (2009).
  • Extensive depot specific analysis of the effects of PPARγ ligand on glucose uptake and intracellular fate in visceral and subcutaneous depots.
  • Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K: Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282, 3450–3457 (2007).
  • Yao-Borengasser A, Rasouli N, Varma V et al.: Lipin expression is attenuated in adipose tissue of insulin-resistant human subjects and increases with peroxisome proliferator-activated receptor g activation. Diabetes 55, 2811–2818 (2006).
  • Reue K, Brindley DN: Thematic review series: glycerolipids. Multiple roles for lipins/ phosphatidate phosphatase enzymes in lipid metabolism. J. Lipid Res. 49, 2493–2503 (2008).
  • DiGirolamo M, Newby FD, Lovejoy J: Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J. 6, 2405–2412 (1992).
  • Anghel SI, Bedu E, Vivier CD et al.: Adipose tissue integrity as a prerequisite for systemic energy balance: a critical role for peroxisome proliferator-activated receptor g. J. Biol. Chem. 282, 29946–29957 (2007).
  • Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA: A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8, 1122–1128 (2002).
  • Tontonoz P, Hu E, Devine J, Beale EG, Spiegelman BM: PPAR g 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol. Cell Biol. 15, 351–357 (1995).
  • Festuccia WT, Laplante M, Berthiaume M, Gelinas Y, Deshaies Y: PPARγ agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia 49, 2427–2436 (2006).
  • Extensive depot-specific analysis of the effects of PPARγ ligand on lipolysis and triacylglycerol–fatty acid cycling.
  • Kershaw EE, Schupp M, Guan HP et al.: PPARγ regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 293, E1736–E1745 (2007).
  • Oakes ND, Thalen PG, Jacinto SM, Ljung B: Thiazolidinediones increase plasma–adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability. Diabetes 50, 1158–1165 (2001).
  • Extensive evaluation of in vivo fatty acid metabolism and flux among body tissues in rodents treated with PPARγ ligands.
  • Koutsari C, Jensen MD: Thematic review series: Patient-oriented research. Free fatty acid metabolism in human obesity. J. Lipid Res. 47, 1643–1650 (2006).
  • Newsholme EA: Reflections on the mechanism of action of hormones. FEBS Lett. 117, K121–K134 (1980).
  • Brooks B, Arch JR, Newsholme EA: Effects of hormones on the rate of the triacylglycerol/ fatty acid substrate cycle in adipocytes and epididymal fat pads. FEBS Lett. 146, 327–330 (1982).
  • Kalderon B, Mayorek N, Ben-Yaacov L, Bar-Tana J: Adipose tissue sensitization to insulin induced by troglitazone and MEDICA 16 in obese Zucker rats in vivo. Am. J. Physiol. Endocrinol. Metab. 284, E795–E803 (2003).
  • Miyoshi H, Shulman GI, Peters EJ, Wolfe MH, Elahi D, Wolfe RR: Hormonal control of substrate cycling in humans. J. Clin. Invest. 81, 1545–1555 (1988).
  • Wolfe RR, Klein S, Carraro F, Weber JM: Role of triglyceride–fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am. J. Physiol. 258, E382–E389 (1990).
  • Frayn KN, Langin D, Karpe F: Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased. Diabetologia 51, 394–397 (2008).
  • Harper RD, Saggerson ED: Factors affecting fatty acid oxidation in fat cells isolated from rat white adipose tissue. J. Lipid Res. 17, 516–526 (1976).
  • Wilson-Fritch L, Nicoloro S, Chouinard M et al.: Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Invest. 114, 1281–1289 (2004).
  • Boden G, Homko C, Mozzoli M, Showe LC, Nichols C, Cheung P: Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 54, 880–885 (2005).
  • Bogacka I, Xie H, Bray GA, Smith SR: Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54, 1392–1399 (2005).
  • Cannon B, Nedergaard J: Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).
  • Cypess AM, Lehman S, Williams G et al.: Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).
  • Rothwell NJ, Stock MJ: Biological distribution and significance of brown adipose tissue. Comp. Biochem. Physiol. A Comp. Physiol. 82, 745–751 (1985).
  • Petrovic N, Shabalina IG, Timmons JA, Cannon B, Nedergaard J: Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist. Am. J. Physiol. Endocrinol. Metab. 295, E287–E296 (2008).
  • Festuccia WT, Blanchard PG, Turcotte V et al.: The PPARγ agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1327–R1335 (2009).
  • Laplante M, Festuccia WT, Soucy G et al.: Involvement of adipose tissues in the early hypolipidemic action of PPARγ agonism in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1408–R1417 (2007).
  • Sell H, Berger JP, Samson P et al.: Peroxisome proliferator-activated receptor g agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 145, 3925–3934 (2004).
  • Festuccia WT, Oztezcan S, Laplante M et al.: Peroxisome proliferator-activated receptor-g-mediated positive energy balance in the rat is associated with reduced sympathetic drive to adipose tissues and thyroid status. Endocrinology 149, 2121–2130 (2008).
  • Yanase T, Yashiro T, Takitani K et al.: Differential expression of PPAR g1 and g2 isoforms in human adipose tissue. Biochem. Biophys. Res. Commun. 233, 320–324 (1997).
  • Lefebvre AM, Laville M, Vega N et al.: Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 47, 98–103 (1998).
  • Montague CT, Prins JB, Sanders L et al.: Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47, 1384–1391 (1998).
  • Picard F, Gehin M, Annicotte J et al.: SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931–941 (2002).
  • Leonardsson G, Steel JH, Christian M et al.: Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl Acad. Sci. USA 101, 8437–8442 (2004).
  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.