1,271
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Sphingomyelin biosynthesis: its impact on lipid metabolism and atherosclerosis

Pages 595-609 | Published online: 18 Jan 2017

  • Merkel M, Eckel RH, Goldberg IJ: Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res. 43, 1997–2006 (2002).
  • Otarod JK, Goldberg IJ: Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr. Atheroscler. Rep. 6, 335–342 (2004).
  • Kuksis A, Breckenridge WC, Myher JJ, Kakis G: Replacement of endogenous phospholipids in rat plasma lipoproteins during intravenous infusion of an artificial lipid emulsion. Can. J. Biochem. 56, 630–639 (1978).
  • Saito H, Arimoto I, Tanaka M et al.: Inhibition of lipoprotein lipase activity by sphingomyelin: role of membrane surface structure. Biochim. Biophys. Acta 1486, 312–320 (2000).
  • Arimoto I, Saito H, Kawashima Y, Miyajima K, Handa T: Effects of sphingomyelin and cholesterol on lipoprotein lipase-mediated lipolysis in lipid emulsions. J. Lipid Res. 39, 143–151 (1998).
  • Lobo LI, Wilton DC: Combined effects of sphingomyelin and cholesterol on the hydrolysis of emulsion particle triolein by lipoprotein lipase. Biochim. Biophys. Acta 1349, 122–130 (1997).
  • Cantin B, Brun LD, Gagne C et al.: Alterations in erythrocyte membrane lipid composition and fluidity in primary lipoprotein lipase deficiency. Biochim. Biophys. Acta 1139, 25–31 (1992).
  • Mahley RW, Ji ZS: Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 40, 1–16 (1999).
  • Kothapalli D, Fuki I, Ali K et al.: Antimitogenic effects of HDL and APOE mediated by Cox-2-dependent IP activation. J. Clin. Invest. 113, 609–618 (2004).
  • Huang Y, Ji ZS, Brecht WJ et al.: Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis. Arterioscler. Thromb. Vasc. Biol. 19, 2952–2959 (1999).
  • Mensenkamp AR, Jong MC, van Goor H et al.: Apolipoprotein E participates in the regulation of very low density lipoproteintriglyceride secretion by the liver. J. Biol. Chem. 274, 35711–35718 (1999).
  • Mahley RW, Huang Y, Weisgraber KH: Putting cholesterol in its place: apoE and reverse cholesterol transport. J. Clin. Invest. 116, 1226–1229 (2006).
  • Arimoto I, Matsumoto C, Tanaka M et al.: Surface composition regulates clearance from plasma and triolein lipolysis of lipid emulsions. Lipids 33, 773–779 (1998).
  • Morita SY, Nakano M, Sakurai A et al.: Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Lett. 579, 1759–1764 (2005).
  • Morita SY, Okuhira K, Tsuchimoto N et al.: Effects of sphingomyelin on apolipoproteinEand lipoprotein lipase-mediated cell uptake of lipid particles. Biochim. Biophys. Acta 1631, 169–176 (2003).
  • Lucic D, Huang ZH, Gu de S et al.: Regulation of macrophage apoE secretion and sterol efflux by the LDL receptor. J. Lipid Res. 48, 366–372 (2007).
  • Schlitt A, Hojjati MR, von Gizycki H et al.: Serum sphingomyelin levels are related to the clearance of postprandial remnant-like particles. J. Lipid Res. 46, 196–200 (2005).
  • Jeong T, Schissel SL, Tabas I et al.: Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J. Clin. Invest. 101, 905–912 (1998).
  • >First study indicating that ApoE-knockout mice have high plasma sphingomyelin (SM) levels.
  • Krieger M: Charting the fate of the ‘good cholesterol’: identification and characterization of the high-density lipoprotein receptor SR-BI. Annu. Rev. Biochem. 68, 523–558 (1999).
  • Van Eck M, Pennings M, Hoekstra M, Out R, Van Berkel TJ: Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol. 16, 307–315 (2005).
  • Barter PJ, Brewer HB Jr, Chapman MJ et al.: Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 160–167 (2003).
  • Subbaiah PV, Liu M: Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithin-cholesterol acyltransferase reaction. J. Biol. Chem. 268, 20156–20163 (1993).
  • Bolin DJ, Jonas A: Sphingomyelin inhibits the lecithin-cholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding. J. Biol. Chem. 271, 19152–19158 (1996).
  • Rye KA, Hime NJ, Barter PJ: The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins. J. Biol. Chem. 271, 4243–4250 (1996).
  • Tall AR: Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J. Intern. Med. 263, 256–273 (2008).
  • Subbaiah PV, Gesquiere LR, Wang K: Regulation of the selective uptake of cholesteryl esters from high density lipoproteins by sphingomyelin. J. Lipid Res. 46, 2699–2705 (2005).
  • Marques-Vidal P, Jauhiainen M, Metso J, Ehnholm C: Transformation of high density lipoprotein 2 particles by hepatic lipase and phospholipid transfer protein. Atherosclerosis 133, 87–95 (1997).
  • Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809 (1993).
  • Witztum JL, Steinberg D: Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88, 1785–1792 (1991).
  • Yla-Herttuala S, Palinski W, Rosenfeld ME et al.: Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J. Clin. Invest. 84, 1086–1095 (1989).
  • Williams KJ, Tabas I: The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).
  • Williams KJ, Tabas I: The response-to-retention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol. 9, 471–474 (1998).
  • Tabas I, Williams KJ, Boren J: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).
  • Recent review on subendothelial lipoprotein retention.
  • Nievelstein PF, Fogelman AM, Mottino G, Frank JS: Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler. Thromb. 11, 1795–1805 (1991).
  • Smith EB: Intimal and medial lipids in human aortas. Lancet 1, 799–803 (1960).
  • Newman HA, McCandless EL, Zilversmit DB: The synthesis of C14-lipids in rabbit atheromatous lesions. J. Biol. Chem. 236, 1264–1268 (1961).
  • Phillips GB, Dodge JT: Composition of phospholipids and of phospholipid fatty acids of human plasma. J. Lipid Res. 8, 676–681 (1967).
  • Portman OW, Illingworth DR: Arterial metabolism in primates. Primates Med. 9, 145–223 (1976).
  • Hakomori S: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50, 733–764 (1981).
  • Kummerow FA, Cook LS, Wasowicz E, Jelen H: Changes in the phospholipid composition of the arterial cell can result in severe atherosclerotic lesions. J. Nutr. Biochem. 12, 602–607 (2001).
  • Hoff HF, Morton RE: Lipoproteins containing apo B extracted from human aortas. Structure and function. Ann. NY Acad. Sci. 454, 183–194 (1985).
  • Guyton JR, Klemp KF: Development of the lipid-rich core in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 16, 4–11 (1996).
  • Schissel SL, Tweedie-Hardman J, Rapp JH et al.: Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. 98, 1455–1464 (1996).
  • Schissel SL, Jiang X, Tweedie-Hardman J et al.: Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J. Biol. Chem. 273, 2738–2746 (1998).
  • Zilversmit DB, McCandless EL, Jordan PH, Henly WS, Ackerman RF: The synthesis of phospholipids in human atheromatous lesions. Circulation 23, 370–375 (1961).
  • Eisenberg S, Stein Y, Stein O: Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age. J. Clin. Invest. 48, 2320–2329 (1969).
  • Okwu AK, Xu XX, Shiratori Y, Tabas I: Regulation of the threshold for lipoproteininduced acyl-CoA:cholesterol O-acyltransferase stimulation in macrophages by cellular sphingomyelin content. J. Lipid Res. 35, 644–655 (1994).
  • Noel C, Marcel YL, Davignon J: Plasma phospholipids in the different types of primary hyperlipoproteinemia. J. Lab. Clin. Med. 79, 611–621 (1972).
  • Rodriguez JL, Ghiselli GC, Torreggiani D, Sirtori CR: Very low density lipoproteins in normal and cholesterol-fed rabbits: lipid and protein composition and metabolism. Part 1. Chemical composition of very low density lipoproteins in rabbits. Atherosclerosis 23, 73–83 (1976).
  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N: Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).
  • Plump AS, Smith JD, Hayek T et al.: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).
  • Jiang XC, Paultre F, Pearson TA et al.: Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 20, 2614–2618 (2000).
  • First study indicating that human plasma SM is a risk factor.
  • Schlitt A, Blankenberg S, Yan D et al.: Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutr. Metab. (Lond.) 3, 5 (2006).
  • Second study indicating that human plasma sphingomyelinase is a risk factor.
  • Li Z, Basterr MJ, Hailemariam TK et al.: The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis. Biochim. Biophys. Acta 1735, 130–134 (2005).
  • Devlin CM, Leventhal AR, Kuriakose G et al.: Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler. Thromb. Vasc. Biol. 28, 1723–1730 (2008).
  • First study indicating the consequence of SMase deficiency.
  • Simons K, Ikonen E: Functional rafts in cell membranes. Nature 387, 569–572 (1997).
  • Li Z, Hailemariam TK, Zhou H et al.: Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin
  • Prinetti A, Chigorno V, Prioni S et al.: Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem. 276, 21136–21145 (2001).
  • Brown DA, London E: Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000).
  • Keller P, Simons K: Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell. Biol. 140, 1357–1367 (1998).
  • Hoekstra D, van IJzendoorn SC: Lipid trafficking and sorting: how cholesterol is filling gaps. Curr. Opin. Cell Biol. 12, 496–502 (2000).
  • Ledesma MD, Brugger B, Bunning C, Wieland FT, Dotti CG: Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. EMBO J. 18, 1761–1771 (1999).
  • Brown RE: Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell. Sci. 111(Pt 1), 1–9 (1998).
  • Simons K, Ikonen E: How cells handle cholesterol. Science 290, 1721–1726 (2000).
  • Drab M, Verkade P, Elger M et al.: Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 genedisrupted mice. Science 293, 2449–2452 (2001).
  • Razani B, Engelman JA, Wang XB et al.: Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138 (2001).
  • Kim S, Watarai M, Suzuki H et al.: Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb. Pathog. 37, 11–19 (2004).
  • Graf GA, Connell PM, van der Westhuyzen DR, Smart EJ: The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J. Biol. Chem. 274, 12043–12048 (1999).
  • Pohl J, Ring A, Korkmaz U, Ehehalt R, Stremmel W: FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol. Biol. Cell 16, 24–31 (2005).
  • Rhainds D, Bourgeois P, Bourret G et al.: Localization and regulation of SR-BI in membrane rafts of HepG2 cells. J. Cell. Sci. 117, 3095–3105 (2004).
  • von Arnim CA, Kinoshita A, Peltan ID et al.: The low density lipoprotein receptor-related protein (LRP) is a novel b-secretase (BACE1) substrate. J. Biol. Chem. 280, 17777–17785 (2005).
  • Jessup W, Gelissen IC, Gaus K, Kritharides L: Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr. Opin. Lipidol. 17, 247–257 (2006).
  • Landry YD, Denis M, Nandi S et al.: ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J. Biol. Chem. 281, 36091–36101 (2006).
  • Triantafilou M, Miyake K, Golenbock DT, Triantafilou K: Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell. Sci. 115, 2603–2611 (2002).
  • Soong G, Reddy B, Sokol S, Adamo R, Prince A: TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest. 113, 1482–1489 (2004).
  • Grassme H, Jendrossek V, Bock J, Riehle A, Gulbins E: Ceramide-rich membrane rafts mediate CD40 clustering. J. Immunol. 168, 298–307 (2002).
  • Grassme H, Bock J, Kun J, Gulbins E: Clustering of CD40 ligand is required to form a functional contact with CD40. J. Biol. Chem. 277, 30289–30299 (2002).
  • Bezombes C, Grazide S, Garret C et al.: Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood 104, 1166–1173 (2004).
  • Boucher LM, Wiegmann K, Futterer A et al.: CD28 signals through acidic sphingomyelinase. J. Exp. Med. 181, 2059–2068 (1995).
  • Pfeiffer A, Bottcher A, Orso E et al.: Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 31, 3153–3164 (2001).
  • Mathias S, Younes A, Kan CC et al.: Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 b. Science 259, 519–522 (1993).
  • Leventhal AR, Chen W, Tall AR, Tabas I: Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux. J. Biol. Chem. 276, 44976–44983 (2001).
  • Schuchman EH, Desnick RJ: Niemann–Pick disease A and B: sphingomyelinase deficiency. The Metabolic and Molecular Basis of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw-Hill, NY, USA, 2601–2624 (1995).
  • Slotte JP: Sphingomyelin–cholesterol interactions in biological and model membranes. Chem. Phys. Lipids 102, 13–27 (1999).
  • Ridgway ND: Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484, 129–141 (2000).
  • Viana MB, Giugliani R, Leite VH et al.: Very low levels of high density lipoprotein cholesterol in four sibs of a family with non-neuropathic Niemann–Pick disease and sea-blue histiocytosis. J. Med. Genet. 27, 499–504 (1990).
  • Tall AR, Wang N: Tangier disease as a test of the reverse cholesterol transport hypothesis. J. Clin. Invest. 106, 1205–1207 (2000).
  • Gaus K, Kritharides L, Schmitz G et al.: Apolipoprotein A-1 interaction with plasma membrane lipid rafts controls cholesterol export from macrophages. FASEB J. 18, 574–576 (2004).
  • Mendez AJ, Lin G, Wade DP, Lawn RM, Oram JF: Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J. Biol. Chem. 276, 3158–3166 (2001).
  • Gelissen IC, Harris M, Rye KA et al.: ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler. Thromb. Vasc. Biol. 26, 534–540 (2006).
  • Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR: LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler. Thromb. Vasc. Biol. 26, 1310–1316 (2006).
  • Huang ZH, Gu D, Lange Y, Mazzone T: Expression of scavenger receptor BI facilitates sterol movement between the plasma membrane and the endoplasmic reticulum in macrophages. Biochemistry 42, 3949–3955 (2003).
  • Zhang W, Yancey PG, Su YR et al.: Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 108, 2258–2263 (2003).
  • Timmins JM, Lee JY, Boudyguina E et al.: Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J. Clin. Invest. 115, 1333–1342 (2005).
  • Lee JY, Parks JS: ATP-binding cassette transporter AI and its role in HDL formation. Curr. Opin. Lipidol. 16, 19–25 (2005).
  • Landschulz KT, Pathak RK, Rigotti A, Krieger M, Hobbs HH: Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J. Clin. Invest. 98, 984–995 (1996).
  • Stangl H, Hyatt M, Hobbs HH: Transport of lipids from high and low density lipoproteins via scavenger receptor-BI. J. Biol. Chem. 274, 32692–32698 (1999).
  • Kennedy MA, Barrera GC, Nakamura K et al.: ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell. Metab. 1, 121–131 (2005).
  • Christiansen K, Carlsen J: Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim. Biophys. Acta 647, 188–195 (1981).
  • Danielsen EM, Hansen GH: Lipid raft organization and function in the small intestinal brush border. J. Physiol. Biochem. 64, 377–382 (20080.
  • Brown DA, Rose JK: Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).
  • Field FJ, Born E, Murthy S, Mathur SN: Caveolin is present in intestinal cells: role in cholesterol trafficking? J. Lipid Res. 39, 1938–1950 (1998).
  • Garmy N, Taieb N, Yahi N, Fantini J: Interaction of cholesterol with sphingosine: physicochemical characterization and impact on intestinal absorption. J. Lipid Res. 46, 36–45 (2005).
  • Babitt J, Trigatti B, Rigotti A et al.: Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J. Biol. Chem. 272, 13242–13249 (1997).
  • Drobnik W, Borsukova H, Bottcher A et al.: Apo AI/ABCA1-dependent and HDL3mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic 3, 268–278 (2002).
  • Nagao K, Takahashi K, Hanada K et al.: Enhanced apoA-I-dependent cholesterol efflux by ABCA1 from sphingomyelindeficient Chinese hamster ovary cells. J. Biol. Chem. 282, 14868–14874 (2007).
  • Merrill AH Jr, Jones DD: An update of the enzymology and regulation of sphingomyelin metabolism. Biochim. Biophys. Acta 1044, 1–12 (1990).
  • Weiss B, Stoffel W: Human and murine serine-palmitoyl-CoA transferase – cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur. J. Biochem. 249, 239–247 (1997).
  • Hanada K, Hara T, Nishijima M et al.: A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J. Biol. Chem. 272, 32108–32114 (1997).
  • Yasuda S, Nishijima M, Hanada K: Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J. Biol. Chem. 278, 4176–4183 (2003).
  • Hornemann T, Richard S, Rutti MF, Wei Y, von Eckardstein A: Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281, 37275–37281 (2006).
  • Gable K, Slife H, Bacikova D, Monaghan E, Dunn TM: Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J. Biol. Chem. 275, 7597–7603 (2000).
  • Han G, Gupta SD, Gable K et al.: Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl Acad. Sci. USA 106, 8186–8191 (2009).
  • Yamaji A, Sekizawa Y, Emoto K et al.: Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306 (1998).
  • Ishitsuka R, Yamaji-Hasegawa A, Makino A, Hirabayashi Y, Kobayashi T: A lipid-specific toxin reveals heterogeneity of sphingomyelincontaining membranes. Biophys. J. 86, 296–307 (2004).
  • Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, Nishijima M: Mammalian cell mutants resistant to a sphingomyelindirected cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J. Biol. Chem. 273, 33787–33794 (1998).
  • Liu J, Zhang H, Li Z et al.: Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice. Arterioscler. Thromb. Vasc. Biol. 29(6), 850–856 (2009)
  • Hailemariam TK, Huan C, Liu J et al.: Sphingomyelin synthase 2 deficiency attenuates NFkB activation. Arterioscler. Thromb. Vasc. Biol. 28, 1519–1526 (2008).
  • Zweerink MM, Edison AM, Wells GB et al.: Characterization of a novel, potent, and specific inhibitor of serine palmitoyltransferase. J. Biol. Chem. 267, 25032–25038 (1992).
  • Mandala SM, Frommer BR, Thornton RA et al.: Inhibition of serine palmitoyltransferase activity by lipoxamycin. J. Antibiot. (Tokyo) 47, 376–379 (1994).
  • Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T: Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/ myriocin. Biochem. Biophys. Res. Commun. 211, 396–403 (1995).
  • Kobayashi S, Furuta T, Hayashi T et al.: Catalytic asymmetric syntheses of antifungal sphingofungins and their biological activity as potent inhibitors of serine palmitoyltransferase (SPT). J. Am. Chem. Soc. 120, 908–919 (1998).
  • Chen JK, Lane WS, Schreiber SL: The identification of myriocin-binding proteins. Chem. Biol. 6, 221–235 (1999).
  • Park TS, Panek RL, Mueller SB et al.: Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110, 3465–3471 (2004).
  • induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol. Res. 58, 45–51 (2008).
  • First study indicating that SPT inhibition can regress atherosclerosis
  • Li Z, Li Y, Pan X et al.: Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol. Biochim. Biophys. Acta 1791(4), 297–306 (2009).
  • Hojjati MR, Li Z, Jiang XC: Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim. Biophys. Acta 1737, 44–51 (2005).
  • Report investigating SPT-knockout mice.
  • Holland WL, Brozinick JT, Wang LP et al.: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesityinduced insulin resistance. Cell. Metab. 5, 167–179 (2007).
  • First study to elucidate the relationship between serine palmitoyltransferase (SPT) inhibition and atherosclerosis.
  • Hojjati MR, Li Z, Zhou H et al.: Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoEdeficient mice. J. Biol. Chem. 280, 10284–10289 (2005).
  • First study to elucidate SPT inhibition and insulin sensitivity.
  • Stratford S, DeWald DB, Summers SA: Ceramide dissociates 3´-phosphoinositide production from pleckstrin homology domain translocation. Biochem. J. 354, 359–368 (2001).
  • Powell DJ, Hajduch E, Kular G, Hundal HS: Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCz-dependent mechanism. Mol. Cell. Biol. 23, 7794–7808 (2003).
  • Holland WL, Summers SA: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 29, 381–402 (2008).
  • Adams JM 2nd, Pratipanawatr T, Berria R et al.: Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25–31 (2004).
  • Skovbro M, Baranowski M, Skov-Jensen C et al.: Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 51, 1253–1260 (2008).
  • Wang CN, O’Brien L, Brindley DN: Effects of cell-permeable ceramides and tumor necrosis factor-a on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes 47, 24–31 (1998).
  • Kralik SF, Liu P, Leffler BJ, Elmendorf JS: Ceramide and glucosamine antagonism of alternate signaling pathways regulating insulin- and osmotic shock-induced glucose transporter 4 translocation. Endocrinology 143, 37–46 (2002).
  • Second study to elucidate the relationship between SPT inhibition and atherosclerosis.
  • Glaros EN, Kim WS, Wu BJ et al.: Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 73, 1340–1346 (2007).
  • Third study to elucidate the relationship between SPT inhibition and atherosclerosis.
  • Park TS, Rosebury W, Kindt EK, Kowala MC, Panek RL: Serine palmitoyltransferase inhibitor myriocin
  • Yamashita T, Hashiramoto A, Haluzik M et al.: Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl Acad. Sci. USA 100, 3445–3449 (2003).
  • Kabayama K, Sato T, Saito K et al.: Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Natl Acad. Sci. USA 104, 13678–13683 (2007).
  • Yu C, Chen Y, Cline GW et al.: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).
  • Memon RA, Holleran WM, Moser AH et al.: Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler. Thromb. Vasc. Biol. 18, 1257–1265 (1998).
  • Memon RA, Holleran WM, Uchida Y et al.: Regulation of sphingolipid and glycosphingolipid metabolism in extrahepatic tissues by endotoxin. J. Lipid Res. 42, 452–459 (2001).
  • Farrell AM, Uchida Y, Nagiec MM et al.: UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J. Lipid Res. 39, 2031–2038 (1998).
  • Shimabukuro M, Higa M, Zhou YT et al.: Lipoapoptosis in b-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem. 273, 32487–32490 (1998).
  • Dickson RC, Lester RL, Nagiec MM: Serine palmitoyltransferase. Methods Enzymol. 311, 3–9 (2000).
  • Longo CA, Tyler D, Mallampalli RK: Sphingomyelin metabolism is developmentally regulated in rat lung. Am. J. Respir. Cell. Mol. Biol. 16, 605–612 (1997).
  • Rotta LN, Da Silva CG, Perry ML, Trindade VM: Undernutrition decreases serine palmitoyltransferase activity in developing rat hypothalamus. Ann. Nutr. Metab. 43, 152–158 (1999).
  • Merrill AH Jr: Characterization of serine palmitoyltransferase activity in Chinese hamster overy cells. Biochim. Biophys. Acta 754, 284–291 (1983).
  • Hanada K, Hara T, Nishijima M: Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J. Biol. Chem. 275, 8409–8415 (2000).
  • Lipsky NG, Pagano RE: Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cell. Biol. 100, 27–34 (1985).
  • Kobayashi T, Pagano RE: Lipid transport during mitosis. Alternative pathways for delivery of newly synthesized lipids to the cell surface. J. Biol. Chem. 264, 5966–5973 (1989).
  • Futerman AH, Stieger B, Hubbard AL, Pagano RE: Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem. 265, 8650–8657 (1990).
  • Marggraf WD, Zertani R, Anderer FA, Kanfer JN: The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts. Biochim. Biophys. Acta 710, 314–323 (1982).
  • Malgat M, Maurice A, Baraud J: Sphingomyelin and ceramidephosphoethanolamine synthesis by microsomes and plasma membranes from rat liver and brain. J. Lipid Res. 27, 251–260 (1986).
  • van Helvoort A, van’t Hof W, Ritsema T, Sandra A, van Meer G: Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin–Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J. Biol. Chem. 269, 1763–1769 (1994).
  • Allan D, Obradors MJ: Enzyme distributions in subcellular fractions of BHK cells infected with Semliki forest virus: evidence for a major fraction of sphingomyelin synthase in the trans-golgi network. Biochim. Biophys. Acta 1450, 277–287 (1999).
  • Albi E, Magni MV: Sphingomyelin synthase in rat liver nuclear membrane and chromatin. FEBS Lett. 460, 369–372 (1999).
  • Albi E, Viola–Magm MP: Chromatin-associated sphingomyelin: metabolism in relation to cell function. Cell. Biochem. Funct. 21, 211–215 (2003).
  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC: Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).
  • Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T: Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J. Biol. Chem. 279, 18688–18693 (2004).
  • Yeang C, Varshney S, Wang R, Zhang Y, Ye D, Jiang XC: The domain responsible for sphingomyelin synthase (SMS) activity. Biochim. Biophys. Acta 1781, 610–617 (2008).
  • Miyaji M, Jin ZX, Yamaoka S et al.: Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J. Exp. Med. 202, 249–259 (2005).
  • Van der Luit AH, Budde M, Zerp S et al.: Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesteroldeficiency in lipid rafts. Biochem. J. 401, 541–549 (2007).
  • Geng YJ, Libby P: Progression of atheroma: a struggle between death and procreation. Arterioscler. Thromb. Vasc. Biol. 22, 1370–1380 (2002).
  • Separovic D, Hanada K, Maitah MY et al.: Sphingomyelin synthase 1 suppresses ceramide production and apoptosis post-photodamage. Biochem. Biophys. Res. Commun. 358, 196–202 (2007).
  • Ding T, Li Z, Hailemariam T et al.: SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. J. Lipid Res. 49, 376–385 (2008).
  • Ko YG, Lee JS, Kang YS, Ahn JH, Seo JS: TNF-a-mediated apoptosis is initiated in caveolae-like domains. J. Immunol. 162, 7217–7223 (1999).
  • Cerbon J, del Carmen Lopez-Sanchez R: Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin–Darby canine kidney cells. Biochem. J. 373, 917–924 (2003).
  • Wakelam MJ: Diacylglycerol – when is it an intracellular messenger? Biochim. Biophys. Acta 1436, 117–126 (1998).
  • Griner EM, Kazanietz MG: Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer. 7, 281–294 (2007).
  • Mayor S, Maxfield FR: Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell. 6, 929–944 (1995).
  • Murriel CL, Mochly-Rosen D: Opposing roles of d and ePKC in cardiac ischemia and reperfusion: targeting the apoptotic machinery. Arch. Biochem. Biophys. 420, 246–254 (2003).
  • Hannun YA, Luberto C: Ceramide in the eukaryotic stress response. Trends Cell. Biol. 10, 73–80 (2000).
  • Kolesnick R: The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3–8 (2002).
  • Libby P: Inflammation in atherosclerosis. Nature 420, 868–874 (2002).
  • Mayo MW, Baldwin AS: The transcription factor NF-kB: control of oncogenesis and cancer therapy resistance. Biochim. Biophys. Acta 1470, M55–M62 (2000).
  • Branen L, Hovgaard L, Nitulescu M et al.: Inhibition of tumor necrosis factor-a reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 24, 2137–2142 (2004).
  • Whitman SC, Ravisankar P, Daugherty A: IFN-g deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E-/- mice. J. Interferon Cytokine Res. 22, 661–670 (2002).
  • Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C: Recruitment of TNF receptor 1 to lipid rafts is essential for TNFa-mediated NF-kB activation. Immunity 18, 655–664 (20030.
  • Hunter I, Nixon GF: Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-a-mediated activation of RhoA but dispensable for the activation of the NF-kB and MAPK pathways. J. Biol. Chem. 281, 34705–34715 (2006).
  • Higuchi M, Singh S, Jaffrezou JP, Aggarwal BB: Acidic sphingomyelinasegenerated ceramide is needed but not sufficient for TNF-induced apoptosis and nuclear factor-k B activation. J. Immunol. 157, 297–304 (1996).
  • Gamard CJ, Dbaibo GS, Liu B, Obeid LM, Hannun YA: Selective involvement of ceramide in cytokine-induced apoptosis. Ceramide inhibits phorbol ester activation of nuclear factor kB. J. Biol. Chem. 272, 16474–16481 (1997).
  • Luberto C, Yoo DS, Suidan HS, Bartoli GM, Hannun YA: Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-k B in normal and SV40-transformed human fibroblasts. J. Biol. Chem. 275, 14760–14766 (2000).
  • Liu J, Huan C, Chakraborty M et al.: Macrophage sphingomyelin synthase 2 (SMS2) deficiency decreases atherosclerosis in mice. Circ. Res. (2009) (In Press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.