1,048
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Role of cholesteryl ester hydrolase in atherosclerosis

Pages 573-585 | Published online: 18 Jan 2017

  • Ross R, Agius L: The process of atherogenesis – cellular and molecular interaction: from experimental animal models to humans. Diabetologia 35(Suppl. 2), S34–S40 (1992).
  • Williams KJ, Tabas I: The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15(5), 551–561 (1995).
  • Williams KJ, Tabas I: The response-to-retention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol. 9(5), 471–474 (1998).
  • Kruth HS: Sequestration of aggregated low-density lipoproteins by macrophages. Curr. Opin. Lipidol. 13(5), 483–488 (2002).
  • Kruth HS, Jones NL, Huang W et al.: Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. 280(3), 2352–2360 (2005).
  • Describe the mechanism of foam cell formation with native rather than modified LDL.
  • Kruth HS, Huang W, Ishii I, Zhang WY: Macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. 277(37), 34573–34580 (2002).
  • Tabas I: Cholesterol and phospholipid metabolism in macrophages. Biochim. Biophys. Acta 1529, 164–174 (2000).
  • Sliskovic DR, White AD: Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents. Trends Pharmacol. Sci. 12, 194–199 (1991).
  • Matsuda K: ACAT inhibitors as antiatherosclerotic agents. Med. Res. Rev. 14, 271–305 (1994).
  • Matsuo M, Ito F, Konto A, Aketa M, Tomoi M, Shimomura K: Effect of FR145237, a novel ACAT inhibitor on atherogenesis in cholesterol fed and WHHl rabbits. Evidence for a direct effect on the arterial wall. Biochem. Biophys. Acta 1259(3), 254–260 (1995).
  • Nicolosi RJ, Wilson TA, Krause BR: The ACAT inhibitor, CI 1011 is effective in the prevention and regression of aortic fatty streak in hamsters. Atherosclerosis 137, 77–85 (1998).
  • Perrey S, Legendre C, Matsuura A et al.: Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis. Atherosclerosis 155, 359–370 (2001).
  • Accad M, Smith S, Newland D et al.: Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase-1. J. Clin. Invest. 105, 711–719 (2000).
  • Demonstrates the detrimental side effects of acyl-CoA cholesterol acyltransferase (ACAT)-1 inhibition related to accumulation of free cholesterol (FC).
  • Yagu H, Kitamine T, Osuga J et al.: Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J. Biol. Chem. 275, 21324–21330 (2000).
  • First to describe that hydrolysis of cholesteryl ester (CE) stored as cytoplasmic lipid droplets is extralysosomal and is catalyzed by a neutral cholesteryl ester hydrolase (CEH).
  • Demonstrates the detrimental side effects of ACAT-1 inhibition related to accumulation of FC.
  • Fazio S, Major AS, Swift LL et al.: Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J. Clin. Invest. 107, 163–171 (2001).
  • Bocan TM, Krause BR, Rosebury WS et al.: The ACAT inhibitor avasimbe reduces macrophages and matrix metalloproteinase expression in atherosclerotic lesion of hypercholesterolemic rabbits. Arteioscle. Thromb. Vasc. Biol. 20, 70–79 (2000).
  • Glass CK, Witztum JL: Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).
  • Brown MS, Ho YK, Goldstein JL: The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and reesterification of cytoplasmic cholesteryl esters. J. Biol. Chem. 255(19), 9344–9452 (1980).
  • Björkhem I, Andersson O, Diczfalusy U et al.: Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc. Natl Acad. Sci. USA 91(18), 8592–8596 (1994).
  • Marcel YL, Ouimet M, Wang MD: Regulation of cholesterol efflux from macrophages. Curr. Opin. Lipidol. 19(5), 455–461 (2008).
  • Comprehensive review of the efflux pathways by which FC is removed from macrophage foam cells.
  • Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N: HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7(5), 365–375 (2008).
  • Rothblat GH, de la Llera-Moya M, Favari E, Yancey PG, Kellner-Weibel G: Cellular cholesterol flux studies: methodological considerations. Atherosclerosis 163(1), 1–8 (2002).
  • Excellent review with attention to details needed to perform and interpret FC efflux studies.
  • Ishii I, Oka M, Katto N, Shirai K, Saito Y, Hirose S: b-VLDL-induced cholesterol ester deposition in macrophages may be regulated by neutral cholesterol esterase activity. Arterioscler. Thromb. 12, 1139–1145 (1992).
  • Mathur SN, Field FJ, Megan MB, Armstrong HL: A defect in mobilization of cholesteryl esters in rabbit macrophages. Biochim. Biophys. Acta 834, 48–57 (1985).
  • Yancey PG, St. Clair RW: Mechanism of the defect in cholesteryl ester clearance from macrophages of atherosclerosis-susceptible White Carneau pigeons. J. Lipid Res. 35, 2114–2129 (1994).
  • Goldberg DI, Khoo JC: Stimulation of neutral cholesteryl ester hydrolase by cAMP in P388D1 macrophages. Biochim. Biophys. Acta 1042, 132–137 (1990).
  • Small CA, Goodacre JA, Yeaman SJ: Hormone sensitive lipase is responsible for the neutral cholesteryl ester hydrolase activity in macrophages. FEBS Lett. 247, 205–208 (1989).
  • Khoo JC, Reue K, Steinberg D, Schotz MC: Expression of hormone-sensitive lipase mRNA in macrophages. J. Lipid Res. 34, 1969–1974 (1993).
  • Johnson WJ, Jang SY, Bernard DW: Hormone sensitive lipase mRNA in both monocyte and macrophage forms of the human THP-1 cell line. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126(4), 543–552 (2000).
  • Reue K, Cohen RD, Schotz MC: Evidence for hormone-sensitive lipase mRNA expression in human monocyte/macrophages. Arterioscler. Thromb. Vasc. Biol. 17(12), 3428–3432 (1997).
  • Li F, Hui DY: Modified low density lipoprotein enhances the secretion of bile salt-stimulated cholesterol esterase by human monocyte-macrophages. Species-specific difference in macrophage cholesteryl ester hydrolase. J. Biol. Chem. 272, 28666–28671 (1997).
  • Harte RA, Hultén LM, Lindmark H et al.:
  • Osuga J, Ishibashi S, Oka T et al.: Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl Acad. Sci USA 97, 787–792 (2000).
  • Contreras JA: Hormone sensitive lipase is not required for cholesteryl ester hydrolysis in macrophages. Biochem. Biophys. Res. Comm. 292, 900–903 (2002).
  • Escary J, Choy HA, Reue K et al.: Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages. J. Lipid Res. 40, 397–404 (1999).
  • Gallo LL: Sterol ester hydrolase from rat pancreas. Methods Enzymol. 71(Pt C), 664–674 (1981).
  • Kissel JA, Fontaine RN, Turck CW, Brockman HL, Hui DY: Molecular cloning and expression of cDNA for rat pancreatic cholesterol esterase. Biochim. Biophys. Acta 1006(2), 227–236 (1989).
  • Jacobson PW, Wiesenfeld PW, Gallo LL, Tate RL, Osborne JC Jr: Sodium cholateinduced changes in the conformation and activity of rat pancreatic cholesterol esterase. J. Biol. Chem. 265(1), 515–521 (1990).
  • Hui DY, Kissel JA: Sequence identity between human pancreatic cholesterol esterase and bile salt-stimulated milk lipase. FEBS Lett. 276(1–2), 131–134 (1990).
  • Kodvawala A, Ghering AB, Davidson WS, Hui DY: Carboxyl ester lipase expression in macrophages increases cholesteryl ester accumulation and promotes atherosclerosis. J. Biol. Chem. 280, 38592–38598 (2005).
  • Ghosh S, Grogan WM: Rapid three-step purification of a hepatic neutral cholesteryl ester hydrolase which is not the pancreatic enzyme. Lipids 26(10), 793–798 (1991).
  • Ghosh S, Mallonee DH, Hylemon PB, Grogan WM: Molecular cloning and expression of rat hepatic neutral cholesteryl ester hydrolase. Biochim. Biophys. Acta 1259(3), 305–312 (1995).
  • Ghosh S: Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing and expression of full-length cDNA. Physiol. Genomics 2, 1–8 (2000).
  • Zhao B, Fisher BJ, St Clair RW, Rudel LL, Shosh S: Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J. Lipid Res. 46, 2114–2121 (2005).
  • Ghosh S, St Clair RW, Rudel LL: Mobilization of cytoplasmic CE droplets by over-expression of human macrophage cholesteryl ester hydrolase. J. Lipid Res. 44, 1833–1840 (2003).
  • Zhao B, Song J, St Clair RW, Ghosh S: Stable over-expression of human macrophage cholesteryl ester hydrolase (CEH) results in enhanced free cholesterol efflux from human thp1-macrophages. Am. J. Physiol. Cell Physiol. 292(1), C405–C412 (2006).
  • Okazaki H, Igarashi M, Nishi M et al.: Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. J. Biol. Chem. 283(48), 33357–33364 (2008).
  • Escary JL, Choy HA, Reue K, Schotz MC: Hormone-sensitive lipase overexpression increases cholesteryl ester hydrolysis in macrophage foam cells. Arterioscler. Thromb. Vasc. Biol. 18(6), 991–998 (1998).
  • Okazaki H, Osuga J, Tsukamoto K et al.: Elimination of cholesterol ester from macrophage foam cells by adenovirus-mediated gene transfer of hormone-sensitive lipase. J. Biol. Chem. 277(35), 31893–31899 (2002).
  • Adorni MP, Zimetti F, Billheimer JT et al.: The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res. 48(11), 2453–2462 (2007).
  • Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK: Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. Biochim. Biophys. Acta 1781(10), 643–654 (2008).
  • First study to describe the presence of SR-BII and its role in delivery of HDL–CE.
  • First report describing removal of cholesterol from macrophages following conversion to 27-hydoxycholesterol, establishing a novel mechanism for FC removal from macrophage foam cells.
  • Wang N, Lan D, Chen W, Matsuura F, Tall AR: ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101(26), 9774–9779 (2004).
  • Provides the possible mechanism for the sequential lipidation of ApoA-I during the process of FC efflux from macrophages.
  • Connelly MA, Williams DL: Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Curr. Opin. Lipidol. 15, 287–295 (2004).
  • Excellent review summarizing the role of scavenger receptor class B, Type I (SR-BI) in delivery of HDL–CE.
  • Webb NR, Connell PM, Graf GA et al.: SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J. Biol. Chem. 273, 15241–15248 (1998).
  • Escary JL, Choy HA, Reue K et al.: Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages. J. Lipid Res. 40(3), 397–404 (1999).
  • Choy HA, Wang XP, Schotz MC: Reduced atherosclerosis in hormone-sensitive lipase transgenic mice overexpressing cholesterol acceptors. Biochim. Biophys. Acta 1634(3), 76–85 (2003).
  • Zhao B, Song J, Chow WN et al.: Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J. Clin. Invest. 117(10), 2983–2992 (2007).
  • Sparrow CP, Pittman RC: Cholesterol esters selectively taken up from high density lipoproteins are hydrolyzed extralysosomally. Biochim. Biophys. Acta 1043, 203–210 (1990).
  • Summarizes the various aspects of regulation of catalysis by lipases at water–lipid interfaces.
  • DeLamatre JG, Carter RM, Hornick CA: Evidence that a neutral cholesteryl ester hydrolase is responsible for the extralysosomal hydrolysis of high-density lipoprotein cholesteryl ester in rat hepatoma cells (Fu5AH). J. Cell Physiol. 157, 164–168 (1993).
  • Connelly MA, Kellner-Weiber G, Rothblat GH et al.: Scavenger receptor, class B, type I (SR-BI)-directed HDLcholesteryl ester hydrolysis. J. Lipid Res. 44, 331–341 (2003).
  • First study demonstrating increased CE accumulation by pharmacological inhibition of CEH/Ces1.
  • Describes the role of hormone-sensitive lipase (HSL) in the hydrolysis of SR-BI delivered CE in adrenal glands and emphasizes that the enzyme responsible for similar hydrolysis in liver and other tissues is not characterized.
  • Kraemer FB, Shen W-J, Harada K et al.: Hormone-sensitive lipase is required for HDL cholesteryl ester-supported adrenal steroidogenesis. Mol. Endocrinol. 18, 549–557 (2004).
  • Harrison EH: Bile salt-dependent, neutral cholesteryl ester hydrolase of rat liver: possible relationship with pancreatic cholesteryl ester hydrolase. Biochim. Biophys. Acta 963(1), 28–34 (1988).
  • Camulli ED, Linke MJ, Brockman HL, Hui DY: Identity of a cytosolic neutral cholesterol esterase in rat liver with the bile salt stimulated cholesterol esterase in pancreas. Biochim. Biophys. Acta 1005(2), 177–182 (1989).
  • Chen X, Harrison EH, Fisher EA: Molecular cloning of the cDNA for rat hepatic, bile salt-dependent cholesteryl ester/retinyl ester hydrolase demonstrates identity with pancreatic carboxylester lipase. Proc. Soc. Exp. Biol. Med. 215(2), 186–191 (1997).
  • Natarajan R, Ghosh S, Grogan W: Catalytic properties of the purified rat hepatic cytosolic cholesteryl ester hydrolase. Biochem. Biophys. Res. Commun. 225, 413–419 (1996).
  • Reis P, Holmberg K, Watzke H et al.: Lipases at interfaces: a review. Adv. Colloid. Interface Sci. 147–148, 237–250 (2009).
  • Carefully examines the effects of substrate presentation on the activity of CEHs.
  • Deykin D, Goodman DS: The hydrolysis of long-chain fatty acid esters of cholesterol with rat liver enzymes. J. Biol. Chem. 237, 3649–3656 (1962).
  • Quantifies, for the first time, the contribution of various FC efflux pathways to total efflux from macrophage foam cells.
  • Natarajan R, Ghosh S, Grogan WM: Age-related changes in mRNA, protein and catalytic activity of hepatic neutral cholesterol ester hydrolase in male rats: evidence for transcriptional regulation. Biochim. Biophys. Acta 1302(2), 153–158 (1996).
  • Natarajan R, Ghosh S, Grogan WM: Molecular cloning of the promoter for rat hepatic neutral cholesterol ester hydrolase: evidence for transcriptional regulation by sterols. Biochem. Biophys. Res. Commun. 243(2), 349–355 (1998).
  • Ghosh S, Natarajan R, Pandak WM, Hylemon PB, Grogan WM: Regulation of hepatic neutral cholesteryl ester hydrolase by hormones and changes in cholesterol flux. Am. J. Physiol. 274(4 Pt 1), G662–G668 (1998).
  • Zhao B, Natarajan R, Ghosh S: Human liver cholesteryl ester hydrolase: cloning, molecular characterization, and role in cellular cholesterol homeostasis. Physiol. Genomics 23(3), 304–310 (2005).
  • Lehner R, Vance DE: Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol. Biochem J. 343, 1–10 (1999).
  • Provides the first in vivo proof-of-concept that enhancing macrophage CE hydrolysis is indeed anti-atherosclerotic and identifies CEH as a potential therapeutic target to attenuate coronary artery disease.
  • Zhao B, Song J, Ghosh S: Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport. J. Lipid Res. 49(10), 2212–2217 (2008).
  • Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ: Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 108, 661–663 (2003).
  • Describe the first method to quantify in vivo reverse cholesterol transport and measure the cholesterol elimination in feces.
  • Holm C, Belfrage P, Fredrikson G: Immunological evidence for the presence of hormone-sensitive lipase in rat tissues other than adipose tissue. Biochem. Biophys. Res. Commun. 148(1), 99–105 (1987).
  • Sekiya M, Osuga J, Yahagi N et al.: Hormone-sensitive lipase is involved in hepatic cholesteryl ester hydrolysis. J. Lipid Res. 49(8), 1829–3188 (2008).
  • Fernandez C, Lindholm M, Krogh M et al.: Disturbed cholesterol homeostasis in hormone-sensitive lipase-null mice. Am. J. Physiol. Endocrinol. Metab. 295 (4), E820–E831 (2008).
  • Camarota LM, Chapman JM, Hui DY et al.: Carboxyl ester lipase cofractionates with scavenger receptor BI in hepatocyte lipid rafts and enhances selective uptake and hydrolysis of cholesteryl esters from HDL3. J. Biol. Chem. 279, 27599–27606 (2004).
  • Nomura DK, Durkin KA, Chiang KP et al.: Serine hydrolase KIAA1363: toxicological and structural features with emphasis on organophosphate interactions. Chem. Res. Toxicol. 19, 1142–1150 (2006).
  • Wei E, Alam M, Sun F et al.: Apolipoprotein B and triacylglycerol secretion in human triacylglycerol hydrolase transgenic mice. J. Lipid Res. 48, 2597–2606 (2007).
  • Ghosh S, Natarajan R: Cloning of the human cholesteryl ester hydrolase promoter: identification of functional peroxisomal proliferator-activated receptor responsive elements. Biochem. Biophys. Res. Commun. 284(4), 1065–1070 (2001).
  • Zhao B, Song J, Arrowood J, Ghosh S: Variations in the expression of cholesteryl ester hydrolase in macrophages from human subjects and its relationship to coronary artery disease (CAD): a pilot study. Circulation Suppl II. 114 (18), 679 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.